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Bayesian method is used to study the low energy reaction 14C(n, γ)15C.

I. INTRODUCTION

Nuclear reactions fuels the stars and determine stel-
lar evolution. p-p fusion and catalytic Carbon-Nitrogen-
Oxygen (CNO) cycle are the two prominent sources of
energy generation in the stars. Stellar models depend on
low energy nuclear cross section inputs. Cross section
measurements, especially involving charged nuclei, at as-
trophysical energies are difficult and often unavailable.
For radiative capture reactions a(b, γ)c where a, b, c are
light nuclei, the inverse process c(γ∗, b)a can be measured
through Coulomb dissociation (CD) by a virtual photon
γ∗ of the strong electromagnetic field generated by an-
other heavy source nuclei with a large charge. However,
the kinematics accessible in CD might not always over-
lap with the region of interest, and possibly probe nuclear
channels that are different than the direct capture (DC)
process one is interested in. Thus theoretical input is of-
ten needed to interpret CD data. Theory is also needed
to extrapolate DC data from the measured energies to
the low energy of astrophysical interest.

Astrophysics interest in 14C(n, γ)15C includes its role
as the slowest reaction in the neutron induced CNO cy-
cle in helium-burning layers of asymptotic giant branch
stars. This slow reactions is a bottle neck in the pro-
duction of nuclei with mass number A ≥ 14 in Big Bang
Nucleosynthesis. Experimental interest in this reaction
stems from the fact that both DC and CD measurements
probe overlapping kinematical regions that can be a use-
ful tool to compare, improve and validate the two alter-
nate methods of measurements. [Fill in some history of
experiments]

Stellar models require accurate nuclear cross section
inputs. This necessitates theory extrapolations with re-
liable error estimates. Effective field theory (EFT) pro-
vides a framework that is model-independent with quan-
tifiable error estimates well suited for low energy reaction
calculations.

Halo EFT as the name suggests is used to describe
structure and reactions involving halo nuclei that are de-
scribed as a shallow bound system of a single or more
valance nucleons and a tightly bound core. The small
valance nucleon separation energy compared to the typ-
ical binding or excitation energy of the core is used to
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define a small ratio for the perturbative halo EFT calcu-
lation.

The 15C nuclei with a neutron separation energy B =
1.218 MeV is described as a single neutron halo with
a tightly bound 14C core with excitation energy E? ≈
6 MeV � B. At the low energies relevant for the CNO
cycle, the cross section is not expected to be sensitive
to the structure of the core, and a two-cluster n+14C de-
scription is expected to be sufficient. This system is ideal
to test out not only different experimental methods but
also the halo EFT formalism which benefits from the sep-
aration in scales between the small binding energy B, low
scattering energy and the high excitation and breakup
energy of the tight 14C core.

The calculation of the 14C(n, γ)15C reaction requires
accurate description of the incoming n+14C state, the fi-
nal 15C bound state, and the electromagnetic (EM) tran-
sition operator. The EM operators at the lowest order
of perturbation in EFT are given by one-body currents
that are well constrained by gauge symmetry. The final
bound state and incoming scattering state can both be
described model-independently in terms of a few scatter-
ing parameters at low energy that appear in the effective
range expansion (ERE). In this work we revisit the ra-
diative capture 14C(n, γ)15C capture calculation in halo
EFT. The scattering parameters in the initial and final
states are not well known. This leads to ambiguity in the
construction of the low energy theory. Both the DC and
CD data requires enhancement of some operators in the
initial state and/or final state interaction. Ref. [1] con-
sidered a particular enhancement of initial state p-wave
interactions and Ref. [2] considered another enhancement
of s-wave final state interactions both of which gave com-
patible accurate description of data. A quantitative com-
parison of the two EFT formulations [1, 2] is provided
here using Bayesian model comparison [3]. [Write some-
thing about the need to do this kind of theory comparisons]

We start with some basic definitions from Bayesian
statistics relevant for theory comparisons in section II.
We discuss the calculation of evidence for a theory from
the available data, and how it is used to calculate the
posterior odds in favor or against a theory in comparison
to another. In section III, we present the EFT expres-
sions for the 14C(n, γ)15C cross section derived earlier in
Refs. [1, 2]. We further develop the power counting for
the two EFT formulations to compare them up to next-
to-leading order (NLO) in the perturbative expansion.
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II. BAYESIAN METHOD

The cross section contains a number of parameters that
cannot be determined theoretically. Previous parameter
estimations in [1] utilized χ2 minimization, which maxi-
mizes the likelihood function P (D|θ,H) by the relation
χ2 ∝ − lnP (D|θ,H). The likelihood is given by

P (D|θ,H) =

N∏
i=1

1

σi
√

2π
exp

{
− (yi − µi(θ))2

2σ2
i

}
, (1)

where data set D consists of N measurements yi with
corresponding errors σi. Theory predictions µi(θ) are
determined by model parameters θ.

We consider Bayesian methods as as an alternative to
χ2 because they allow us to naturally incorporate prior
assumptions about the parameter ranges into model fit-
ting. Additionally, Bayesian methods allow us to com-
pare different models by calculating the evidence from
the data in favor of each one.

Bayes’ theorem is given by

P (θ|D,H) =
P (D|θ,H)P (θ|H)

P (D|H)
, (2)

where the posterior P (θ|D,H) is the probability of pa-
rameters θ defining the distribution of D. Parameter
constraints are incorporated using the prior distribution
P (θ|H); we take this to be a uniform distribution over
the theoretical parameter ranges.

The evidence P (D|H) is given by

P (D|H) =

∫
P (D|θ,H)P (θ|H)dθ. (3)

As such, it is also often referred to as the marginal like-
lihood. In the context of Bayes’ theorem, the evidence
is the normalization constant that sets the area under
P (θ|D,H) to unity.

Bayesian evidence calculation allows us to compare
models with different parameter spaces. Suppose we have
models A and B, denoted MA and MB ; we can compare
the two using the posterior odds ratio

P (MA|D,H)

P (MB |D,H)
=
P (D|MA, H)

P (D|MB , H)
· P (MA|H)

P (MB |H)
, (4)

where first term on the right-hand side is the ratio of
evidences. The second term on the right is known as the
prior odds ratio, which reflects prior assumptions about
which model is more likely to express the distribution of
the data. For our purposes, we consider the prior odds
ratio to be unity.

With a χ2 minimization, increasing the number of
model parameters may yield a better fit. However,
Bayesian evidence balances a model’s wellness-of-fit with
its simplicity, using a natural implementation of Occam’s
razor [4]. Adding more parameters introduces more pri-
ors over which to marginalize, thus penalizing needless
complexity.

For models with multiple parameters, calculating
Bayesian evidence becomes a multi-dimensional integra-
tion problem that can be difficult to solve. Thus, we
utilize a Markov-Chain Monte Carlo method known as
Nested Sampling to estimate the evidence.

Nested sampling maps the likelihood function in multi-
dimensional parameter space onto a number line between
0 and 1. The lowest likelihood is mapped to 1 and the
highest is mapped to 0. n “live” points are drawn from
parameter space, and the likelihood for each is calcu-
lated. The “worst” point (the one with the lowest likeli-
hood value) is mapped onto the number line. It is then
replaced by sampling another point with a greater likeli-
hood. The number line is iteratively populated with the
worst likelihood values in this way, ultimately allowing
us to calculate evidence using a simple integration in one
dimension.

Sampling to replace the worst point may be done using
various methods, including the Metropolis-Hastings algo-
rithm. We implement Nested Sampling using the Nestle
library in Python, which samples using multiple ellipsoids
in parameter space that bound the live points [5].

III. EFFECTIVE FIELD THEORY

The spin-parity Jπ assignments of the incoming neu-

tron n and 14C nuclei are 1
2

+
and 0+, respectively. The

ground state of 15C is a 1
2

+
which is described as a s-

wave bound state of n and 14C in halo EFT. We consider
E1 capture from initial p-wave states that can be in the
2P1/2 and 2P3/2 states using the spectroscopic notation
2S+1LJ for total channel spin S, orbital momentum L
and angular momentum J . The various expressions in
this section are taken from Ref. [1] where the reader can
find more details about the calculation.

The relevant interaction for the capture reaction
14C(n, γ)15C is given by

L = n†α

[
i∂0 +

∇2

2mn

]
nα + C†

[
i∂0 +

∇2

2mc

]
C

+ Ls + Lp , (5)

where n is the nucleon field with spin label α and mass
mn = 939.6 MeV. Sum over repeated indices implied un-
less stated otherwise. C is the spinless field representing
the 14C core with mass mc = 13044 MeV. We use natu-
ral units where ~ = 1 = c. The interaction in the 2S1/2

ground state channel is given by

Ls = φ†α

[
∆(0) + i∂0 +

∇2

2M

]
φα

+ h(0)
[
φ†α(nαC) + h. c.

]
. (6)

An auxiliary field of total mass M = mn + mc with the
quantum numbers of the ground state 15C is usually in-
troduced for convenience. The p-wave interactions are
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given by

Lp =

2∑
η=1

χα,ηi
†
[
∆(η) + i∂0 +

∇2

2M

]
χα,ηi

+

2∑
η=1

h(η)[χα,ηi
†
Pαγ,ηik Nγ

( →
∇
mc
−
←
∇
mn

)
k

C + h. c] , (7)

where η = 1, 2 correspond to the 2P1/2 and 2P3/2 chan-
nels, respectively. The p-wave projectors for the J = 1/2
and J = 3/2 channels are defined as

Pαβ,1ij =
1√
3

(σiσj)
αβ ,

Pαβ,2ij =
√

3δijδ
αβ − 1√

3
(σiσj)

αβ . (8)

The auxiliary fields φ, and χ can be integrated out of the
theory using the equation of motion, leaving only four-
particle interactions between the neutron and 14C core.

iA(κ) =

ih(κ) ih(κ)

= + + · · ·
ih(κ) ih(κ)

FIG. 1. [Change wording a little] Elastic scattering amplitudes

A(κ) in s- and p-waves. Double line is the 14C propagator,
single line the neutron propagator, dashed line the bare dimer
propagator. κ = 0, 1, 2 corresponds to 2S1/2, 2P1/2 and 2P3/2

channels, respectively.

The elastic-scattering amplitude in halo EFT in the
s and p waves can be calculated from the diagrams in
Fig. 1 using the interactions in Eqs. (6), (7). The scat-
tering amplitudes describes both the incoming and the
final bound states. At low energies, the scattering am-
plitude can be expressed model-independently in terms
of a few scattering parameters using the effective range
expansion (ERE) as

iAl(p) =
2π

µ

i

p cot δl − ip
,

p2l+1 cot δl ≈ −1/al +
1

2
rlp

2 + . . . , (9)

for the l-th partial wave. The dimensionful scattering
parameters al, rl determined by the short-ranged nuclear
interaction with a range set by the inverse of the physical
cutoff Λ. Accordingly, the natural expectation is that
al, rl are given by some powers of Λ up to numerical
factors of order 1. However, we will consider a couple of
situations where some of the scattering parameters are
fine-tuned and enhanced by factors of Q instead of Λ.

The ERE parameters are used to determine the EFT
couplings, and accordingly we consider different power-
counting based on the sizes of the ERE parameters.

A straightforward calculation in s wave gives the EFT
amplitude

iA0(p) =
−i[h(0)]2

∆(0) + p2

2µ + µ
2π [h(0)]2(λ+ ip)

, (10)

where λ is a renormalization scale introduced to regulate
divergences in the EFT calculation. Physical observables
are independent of λ. In the s-wave, we rearrange the
ERE to make the pole in the scattering amplitude explicit
at p = iγ where γ is the binding momentum by writing

p cot δ0 ≈ −γ +
1

2
ρ(p2 + γ2) + . . . . (11)

From Eqs. (9), (10) and (11), we fix the ERE couplings
∆(0), h(0) as

2π∆(0)

µ[h(0)]2
+ λ =γ − 1

2
ργ2 ,

− 2π

[h(0)]2µ2
=ρ . (12)

At low energy the contribution of the 15C bound state
wave function is contained in two parameters: the bind-
ing momentum γ which appears as a pole in the ampli-
tude A0 at energy E = −B (or momentum p = iγ) and
the residue at this pole. In writing the ERE around the
pole p = iγ in Eq. (11), the reside is determined once
the effective range ρ is known. Typically one calculates
the wave function renormalization constant Z from the
residue at the pole as

[h(0)]−2Z−1 = − ∂

∂E

1

A0(p)

∣∣∣
E=−B

=
µ2

2π

1− ργ
γ

. (13)

The capture cross section depends on the combination
[h(0)]2Z which can also be related to the Asymptotic Nor-
malization Constant (ANC) of the s-wave bound state
wave function as

C2
1,s =

µ2

π
[h(0)]2Z =

2γ

1− ργ . (14)

The bound state can be model-independently specified
at low energy in terms of the two scattering parameters
γ and ρ.

The p-wave amplitude is calculated in EFT as

iA(η)
1 (p) =

i2πp2/µ

− 2πµ∆(η)

[h(η)]2
− πλ3

2 −
(

3λ
2 + π

[h(η)]2

)
p2 − ip3

.

(15)

Matching Eqs. (15) and (9), we get for p waves

−2πµ∆(η)

[h(η)]2
− π

2
λ3 =− 1/a

(η)
1 ,

−3

2
λ− π

[h(η)]2
=

1

2
r

(η)
1 , (16)
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that determines the p-wave EFT couplings ∆(η), h(η)

from the scattering parameters a
(η)
1 , r

(η)
1 . In the 2P1/2

there is a resonance at Er ≈ 1.885 MeV with width Γr ≈
40 keV in the cm frame. As one approaches the resonance

from E < Er, the phase shift δ
(1)
1 passes through π/2

from below i.e. cot δ
(1)
1 (Er) = 0 and cot′ δ

(1)
1 (Er) < 0.

Defining cot′ δ
(1)
1 (Er) ≡ −2/Γr we calculate [6] the scat-

tering parameters in this channel as

a
(1)
1 = −µΓr

p5
r

, and r
(1)
1 = − 2p3

r

µΓr
, (17)

that gives a results in a Breit-Wigner form with a width

Γr for the amplitude A(1)
1 near the resonance energy

Er. p-wave resonance in n-α scattering was considered
in Refs. [7, 8] using halo EFT. It was shown that non-
perturbative treatment of the scattering volume a1 and
effective momentum r1 in a p-wave channel is necessary
to describe a resonance.

The scattering parameters a
(2)
1 , r

(2)
1 in the 2P3/2 are

not known which becomes an unknown source of uncer-
tainty in the calculation, along with the 2S1/2 effective
range ρ. The one-body current for E1 capture are ob-
tained by gauging the 14C core derivatives/momentum
with minimal substitution q → q+ eZcA where A is the
vector potential, Zc = 6 and e the proton charge. The
total capture cross section is then calculated as [6]

σ(p) =
1

2

64πα

M2
c µ

2

pγ(p2 + γ2)

1− ργ
2∑
η=1

(2J (η) + 1)|g(η)(p)|2 ,

g(η)(p) =
µ

p2 + γ2
+

6πµ

−1/a
(η)
1 + r

(η)
1 p2/2− ip3

×
[
γ

4π
+

ip3 − γ3

6π(p2 + γ2)

]
. (18)

The angular momentum J (1) = 1/2 and J (2) = 3/2 in
the 2P1/2 and 2P3/2 channels respectively.

[Discuss the two power countings next.]

IV. ANALYSIS

We fit data in Region I (Ecm . 1 MeV) that involves
10 Nakamura data points, and in Region II ( Ecm .
2.0 MeV) that involves 18 Nakamura data points [9]. The
4 data points from Reifarth et al. are below Ecm .
1 MeV [10]. We perform fits both with and without the
lowest energy Reifarth data point, thus giving us a to-
tal of 4 different kinds of fits. The fits that include the
lowest Reifarth data are indicated with a ?.

The χ2 fit in Ref. [1] corresponds to a LO calcu-

lation in EFT A power counting that found a
(2)
1 ∼

−1.3× 10−5 MeV−3 ∼ Q−3, r
(2)
1 /2 ∼ 45 MeV ∼ Q.

This power counting assumes natural-sized ρ ∼ 1/Λ,

s
(2)
1 ∼ 1/Λ at NLO. Accordingly, we choose the priors

ρ ∼ U(−2 fm, 2 fm) ,

a
(2)
1 ∼ U(−5Q−3, 5Q−3) ,

r
(2)
1 ∼ U(0, 5Q) ,

s
(2)
1 ∼ U(−2/Λ, 2/Λ) , (19)

where we use Q = 40 MeV, Λ = 200 MeV in the fits.

A wider prior range including possible negative r
(2)
1 < 0

values does not impact the quality of those fits that seem

to suggest that r
(2)
1 > 0. Further, restricting the fits to

negative a
(2)
1 < 0 values, based on previous information

from the χ2 fit, is possible even though we use a wider
prior range. The subsequent work in Ref. [2] considered
the alternate power counting with a larger s-wave effec-
tive range ρ ∼ 1/Q that contributes at LO. The initial
state p-wave interaction in the 2P3/2 channel was rele-

gated to higher order. A χ2 fit gave ρ ∼ 2.76 fm. As dis-
cussed earlier, natural sized p-wave scattering parameters

a
(2)
1 ∼ Λ−3, r

(2)
1 ∼ Λ would push the initial state inter-

action to N3LO. We consider the possible single p-wave

fine tuning suggested in Ref. [8] where a
(2)
1 ∼ Q−2Λ−1.

This makes initial state contribution NLO. We use the
prior

ρ ∼ U(0, 4.2 fm) ,

a
(2)
1 ∼ U(−2Q−2Λ−1, 2Q−2Λ−1) ,

r
(2)
1 ∼ U(Λ/2, 2.5Λ) . (20)

Physics demands that the wave function renormalization
Z (or the ANC) be positive, and accordingly ρ < 1/γ ∼
4.3 fm. Moreover, in the EFT B, we expect a larger ANC
which requires ρ > 0. Note that the choice of prior in

EFT B allows the possibility of natural sized a
(2)
1 ∼ Q−3.

As reference, we also fit the EFT expressions without
any power counting expansion (without the shape pa-
rameter terms) in the 4 previously-mentioned fits over a
wider prior range:

ρ ∼ U(−5 fm, 4.2 fm) ,

a
(2)
1 ∼ U(−10Q−3, 10Q−3) ,

r
(2)
1 ∼ U(0, 2.5Λ) . (21)

These fits are called EFTall. We do not include the shape

parameter s
(2)
1 in these fit that do not follow any specific

power counting. From the NLO EFT A fits III, we find

that s
(2)
1 is poorly constrained by the available data and

it is consistent with being zero.
I observed the following:

1. Usually, LO EFT B gives the strongest evidence
but overall EFT B is better than EFT A.

2. When the errors in the parameters are skewed it is
usually due to a bi-modal distribution such as for
ρ at NLO B.



5

3. Larger ρ is associated with smaller |a(2)
1 |, and

smaller ρ with larger |a(2)
1 |, indicative of the two

alternate but similar χ2 fits.

4. a
(2)
1 is more sensitive to the momentum dependence

of data whereas ρ only effects the overall normal-
ization.

5. Keeping the lowest Reifarth data in EFT B NLO
fits bring the bi-model nature into focus though
overall the NLO fit has large uncertainties in the
parameters. Without the lowest point, ρ has a
large distribution covering the bi-modal region of

the previous fit.

6. All the fitted parameters are consistent with their
respective power counting estimates, though some
with large uncertainty.

7. EFT B describes data better. If we want to con-
strain theory better at NLO, we need better low-
energy data.

V. CONCLUSIONS
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TABLE I. Fitted parameters using the prior set 1. Seed=1234

Theory ρ (fm) a
(2)
1 (MeV−3) r

(2)
1 (MeV) s

(2)
1 (MeV−1) s1 s2

EFT?all I 1.63+0.27
−0.45 −1.26× 10−5+2.78× 10−6

−3.20× 10−6 384+79
−120 — 1.05+0.05

−0.05 0.9+0.04
−0.04

EFT?A LO I — −2.12× 10−5+1.70× 10−6

−1.93× 10−6 156+19
−18 — 1.03+0.04

−0.04 0.89+0.04
−0.04

EFT?A NLO I 0.6+0.45
−0.48 −1.84× 10−5+2.63× 10−6

−3.02× 10−6 178+15
−24 −1.15× 10−3+7.10× 10−3

−5.77× 10−3 1.06+0.04
−0.04 0.89+0.04

−0.04

EFT?B LO I 2.79+0.06
−0.07 — — — 1.08+0.05

−0.05 0.87+0.04
−0.04

EFT?B NLO I 2.73+0.14
−0.49 −2.30× 10−7+5.90× 10−7

−5.11× 10−6 363+101
−170 — 1.08+0.04

−0.04 0.87+0.03
−0.03

EFTall I 1.64+0.39
−0.69 −9.60× 10−6+3.91× 10−6

−4.69× 10−6 311+131
−123 — 1.04+0.05

−0.05 0.91+0.04
−0.04

EFTA LO I — −1.72× 10−5+2.23× 10−6

−2.38× 10−6 128+21
−21 — 1.03+0.05

−0.05 0.9+0.04
−0.04

EFTA NLO I 0.89+0.65
−0.78 −1.36× 10−5+3.09× 10−6

−3.86× 10−6 162+25
−38 −8.86× 10−4+6.47× 10−3

−6.23× 10−3 1.04+0.05
−0.05 0.91+0.04

−0.04

EFTB LO I 2.74+0.07
−0.08 — — — 1.05+0.05

−0.05 0.91+0.04
−0.04

EFTB NLO I 2.31+0.32
−0.24 −2.90× 10−6+2.41× 10−6

−2.27× 10−6 337+105
−133 — 1.05+0.05

−0.05 0.91+0.04
−0.04

EFT?all II 1.73+0.23
−0.3 −1.05× 10−5+2.39× 10−6

−2.76× 10−6 399+70
−101 — 1.03+0.05

−0.05 0.89+0.04
−0.04

EFT?A LO II — −1.90× 10−5+1.82× 10−6

−1.93× 10−6 153+23
−21 — 0.97+0.04

−0.04 0.85+0.04
−0.04

EFT?A NLO II 1.08+0.44
−0.46 −1.43× 10−5+2.40× 10−6

−2.64× 10−6 183+12
−18 −2.46× 10−3+7.95× 10−3

−5.48× 10−3 1.04+0.04
−0.04 0.87+0.04

−0.04

EFT?B LO II 2.76+0.07
−0.07 — — — 1.05+0.05

−0.05 0.87+0.04
−0.04

EFT?B NLO II 2.63+0.2
−0.46 −5.66× 10−7+7.81× 10−7

−5.01× 10−6 397+74
−169 — 1.06+0.04

−0.05 0.87+0.04
−0.04

EFTall II 1.76+0.33
−0.51 −7.42× 10−6+3.02× 10−6

−3.09× 10−6 333+111
−134 — 1.02+0.05

−0.05 0.91+0.04
−0.04

EFTA LO II — −1.42× 10−5+1.69× 10−6

−1.86× 10−6 109+25
−22 — 0.98+0.04

−0.05 0.89+0.04
−0.04

EFTA NLO II 1.23+0.46
−0.58 −1.08× 10−5+1.83× 10−6

−2.27× 10−6 160+23
−33 −6.59× 10−5+6.53× 10−3

−6.74× 10−3 1.02+0.04
−0.04 0.91+0.04

−0.04

EFTB LO II 2.71+0.07
−0.08 — — — 1.02+0.05

−0.05 0.91+0.04
−0.04

EFTB NLO II 2.23+0.35
−0.2 −3.49× 10−6+2.91× 10−6

−1.90× 10−6 375+82
−114 — 1.03+0.04

−0.05 0.91+0.04
−0.04

TABLE II. Cross sections using the prior set 1. Seed=1234

Theory σ23(µb) σMACS(µb)

EFT?all I 4.44+0.32
−0.29 6.34+0.39

−0.36

EFT?A LO I 4.24+0.32
−0.28 6.12+0.40

−0.37

EFT?A NLO I 4.26+0.27
−0.26 6.16+0.35

−0.33

EFT?B LO I 3.95+0.18
−0.17 5.77+0.26

−0.25

EFT?B NLO I 3.92+0.19
−0.18 5.73+0.27

−0.26

EFTall I 3.82+0.45
−0.34 5.58+0.58

−0.45

EFTA LO I 3.60+0.38
−0.34 5.31+0.52

−0.45

EFTA NLO I 3.61+0.35
−0.29 5.33+0.45

−0.41

EFTB LO I 3.82+0.19
−0.19 5.58+0.27

−0.28

EFTB NLO I 3.63+0.20
−0.21 5.33+0.29

−0.30

EFT?all II 4.23+0.31
−0.29 6.09+0.38

−0.38

EFT?A LO II 3.87+0.31
−0.28 5.64+0.39

−0.37

EFT?A NLO II 3.91+0.28
−0.26 5.72+0.37

−0.35

EFT?B LO II 3.88+0.18
−0.18 5.67+0.26

−0.27

EFT?B NLO II 3.85+0.20
−0.20 5.63+0.29

−0.28

EFTall II 3.60+0.32
−0.25 5.29+0.43

−0.35

EFTA LO II 3.15+0.28
−0.25 4.70+0.38

−0.35

EFTA NLO II 3.37+0.26
−0.22 5.00+0.36

−0.32

EFTB LO II 3.75+0.18
−0.19 5.48+0.27

−0.27

EFTB NLO II 3.56+0.21
−0.19 5.23+0.30

−0.27
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TABLE III. Fitted parameters using the prior set 1 (Tim).

Theory ρ (fm) a
(2)
1 (MeV−3) r

(2)
1 (MeV) s

(2)
1 (MeV−1) s1 s2

EFT?all I 1.66+0.26
−0.43 −1.24× 10−5+2.78× 10−6

−2.98× 10−6 387+81
−113 — 1.06+0.05

−0.05 0.90+0.04
−0.04

EFT?A LO I — −2.12× 10−5+1.74× 10−6

−1.94× 10−6 156+20
−19 — 1.03+0.05

−0.04 0.88+0.04
−0.04

EFT?A NLO I 0.56+0.46
−0.49 −1.85× 10−5+2.68× 10−6

−2.95× 10−6 177+16
−24 −1.69× 10−3+7.14× 10−3

−5.48× 10−3 1.06+0.04
−0.04 0.89+0.04

−0.04

EFT?B LO I 2.79+0.07
−0.08 — — — 1.08+0.05

−0.05 0.87+0.04
−0.04

EFT?B NLO I 2.70+0.18
−0.46 −3.71× 10−7+7.54× 10−7

−4.94× 10−6 372+95
−167 — 1.08+0.04

−0.05 0.88+0.04
−0.04

EFTall I 1.69+0.40
−0.65 −9.05× 10−6+3.96× 10−6

−4.39× 10−6 328+117
−132 — 1.05+0.05

−0.05 0.91+0.04
−0.04

EFTA LO I — −1.72× 10−5+2.00× 10−6

−2.36× 10−6 128+24
−20 — 1.03+0.05

−0.05 0.90+0.04
−0.04

EFTA NLO I 0.87+0.59
−0.70 −1.37× 10−5+3.06× 10−6

−3.73× 10−6 161+27
−35 −9.37× 10−4+6.90× 10−3

−5.93× 10−3 1.04+0.05
−0.04 0.91+0.04

−0.04

EFTB LO I 2.74+0.07
−0.08 — — — 1.05+0.05

−0.05 0.91+0.04
−0.04

EFTB NLO I 2.31+0.30
−0.24 −2.92× 10−6+2.39× 10−6

−2.18× 10−6 344+105
−128 — 1.05+0.05

−0.05 0.91+0.04
−0.04

EFT?all II 1.75+0.22
−0.35 −1.07× 10−5+2.56× 10−6

−2.81× 10−6 398+71
−94 — 1.03+0.05

−0.05 0.89+0.04
−0.04

EFT?A LO II — −1.91× 10−5+1.96× 10−6

−1.90× 10−6 154+23
−22 — 0.97+0.05

−0.04 0.85+0.04
−0.04

EFT?A NLO II 1.06+0.45
−0.44 −1.45× 10−5+2.44× 10−6

−2.56× 10−6 182+12
−18 −2.08× 10−3+6.51× 10−3

−5.53× 10−3 1.04+0.04
−0.04 0.87+0.04

−0.04

EFT?B LO II 2.77+0.07
−0.08 — — — 1.05+0.05

−0.05 0.87+0.04
−0.04

EFT?B NLO II 2.65+0.17
−0.48 −4.39× 10−7+6.57× 10−7

−4.99× 10−6 385+87
−178 — 1.05+0.04

−0.04 0.86+0.04
−0.03

EFTall II 1.76+0.32
−0.57 −7.56× 10−6+2.87× 10−6

−3.19× 10−6 324+118
−132 — 1.02+0.05

−0.05 0.91+0.04
−0.04

EFTA LO II — −1.42× 10−5+1.79× 10−6

−1.76× 10−6 107+22
−21 — 0.98+0.05

−0.04 0.89+0.04
−0.04

EFTA NLO II 1.21+0.49
−0.57 −1.09× 10−5+1.88× 10−6

−2.32× 10−6 160+26
−33 −1.77× 10−3+7.44× 10−3

−5.55× 10−3 1.01+0.05
−0.05 0.90+0.04

−0.04

EFTB LO II 2.71+0.08
−0.09 — — — 1.02+0.05

−0.05 0.91+0.04
−0.04

EFTB NLO II 2.24+0.38
−0.21 −3.53× 10−6+3.06× 10−6

−1.96× 10−6 378+82
−110 — 1.03+0.04

−0.05 0.91+0.04
−0.04

TABLE IV. Cross sections using the prior set 1 (Tim).

Theory σ23(µb) σMACS(µb)

EFT?all I 4.44+0.34
−0.31 6.35+0.41

−0.39

EFT?A LO I 4.24+0.33
−0.28 6.13+0.40

−0.36

EFT?A NLO I 4.24+0.28
−0.26 6.14+0.36

−0.34

EFT?B LO I 3.96+0.18
−0.19 5.78+0.27

−0.28

EFT?B NLO I 3.93+0.21
−0.21 5.75+0.30

−0.30

EFTall I 3.83+0.40
−0.32 5.59+0.50

−0.43

EFTA LO I 3.60+0.38
−0.31 5.32+0.51

−0.42

EFTA NLO I 3.61+0.35
−0.30 5.33+0.47

−0.41

EFTB LO I 3.82+0.19
−0.18 5.58+0.28

−0.26

EFTB NLO I 3.62+0.20
−0.20 5.32+0.28

−0.29

EFT?all II 4.25+0.32
−0.30 6.11+0.39

−0.38

EFT?A LO II 3.88+0.31
−0.31 5.65+0.39

−0.40

EFT?A NLO II 3.93+0.27
−0.26 5.75+0.36

−0.35

EFT?B LO II 3.90+0.18
−0.19 5.69+0.26

−0.27

EFT?B NLO II 3.84+0.19
−0.18 5.61+0.27

−0.26

EFTall II 3.61+0.34
−0.28 5.30+0.46

−0.38

EFTA LO II 3.15+0.27
−0.26 4.70+0.38

−0.37

EFTA NLO II 3.37+0.25
−0.24 5.00+0.36

−0.33

EFTB LO II 3.75+0.19
−0.19 5.48+0.28

−0.28

EFTB NLO II 3.59+0.21
−0.19 5.26+0.30

−0.28
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EFT* all I

EFT* A I LO, logZ = 0.11 ± 0.24

EFT* A I NLO, logZ = -0.09 ± 0.25

EFT* B I LO, logZ = 2.66 ± 0.24

EFT* B I NLO, logZ = 0.67 ± 0.25
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EFT all I

EFT A I LO, logZ = 1. ± 0.22

EFT A I NLO, logZ = 1.1 ± 0.23

EFT B I LO, logZ = 4.12 ± 0.22

EFT B I NLO, logZ = 3.43 ± 0.22
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(b)

EFT* all II

EFT* A II LO, logZ = -2.75 ± 0.26
EFT* A II NLO, logZ = -0.99 ± 0.26

EFT* B II LO, logZ = 4.02 ± 0.25

EFT* B II NLO, logZ = 2.18 ± 0.26
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EFT all II

EFT A II LO, logZ = -0.42 ± 0.23

EFT A II NLO, logZ = 0.86 ± 0.23
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EFT B II NLO, logZ = 3.07 ± 0.22
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FIG. 2. 14C(n, γ)15C capture cross section. The dashed
(black), dot-dashed (green), dot-dot-dashed (purple), dotted
(red), and solid (orange) curves correspond to EFT all, EFT A
LO, EFT A NLO, EFT B LO and EFT B NLO, respectively.
Panel (a): Fit to all data [9, 10] around Ecm ≤ 1 MeV, panel
(b): Same as panel (a) except the Reifarth et al. data [10]
at Ecm ≤ 23.3 keV is not included in the fit, panel (c): fit to
all data below Ecm ≤ 2 MeV, and panel (d): same as panel
(c) except the Reifarth et al. data at Ecm ≤ 23.3 keV is not
included. Z is the evidence for each fit normalized to the EFT
all evidence.
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FIG. 3. 14C(n, γ)15C MACS cross section σMACS at kBT =
23.3 keV from LO fits.The two redish distributions correspond
to EFT B fits in region I and II including the Reifarth data
at Ecm ≤ 23.3 keV. The long-dashed and dotted curves show
the Gaussian approximations to the σMACS distributions in
region I and II, respectively. The two blueish distributions
correspond to EFT B fits in region I and II without the Rei-
farth data at Ecm ≤ 23.3 keV. The long-short-dashed and
short-dashed curves show the Gaussian approximations to the
σMACS distributions in region I and II, respectively. In gen-
eral including the data point at Ecm ≤ 23.3 keV gives a larger
average σMACS.
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FIG. 4. 14C(n, γ)15C MACS cross section σMACS at kBT =
23.3 keV from NLO fit.The two redish distributions corre-
spond to EFT B fits in region I and II including the Reifarth
data at Ecm ≤ 23.3 keV. The long-dashed and dotted curves
show the Gaussian approximations to the σMACS distributions
in region I and II, respectively. The two blueish distributions
correspond to EFT B fits in region I and II without the Rei-
farth data at Ecm ≤ 23.3 keV. The long-short-dashed and
short-dashed curves show the Gaussian approximations to the
σMACS distributions in region I and II, respectively. In gen-
eral including the data point at Ecm ≤ 23.3 keV gives a larger
average σMACS.


	Bayesian parameter estimation and model comparison for n-C14
	Abstract
	Introduction
	Bayesian Method
	Effective Field Theory
	Analysis
	Conclusions
	References


