
• Maxwellian average cross sections (MACS) at 23.3 keV: reaction rate scaled 
by Maxwell-Boltzmann velocity distribution [8]

• Data at 23.3 keV is omitted in some runs; MACS calculations without this 
data yield smaller values

BAYES’ THEOREM

• Priors incorporate theoretical assumptions

EVIDENCE CALCULATION

• Bayesian methods favor simplicity of models, penalizing extra parame-
ters (Occam’s razor) to enhance generalizability of predictions [4]
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Bayesian Methods Conclusion & Future Works
• Nested sampling for optimal parameters and logZ
• Evidence favors Model B over Model A
• More precise data at higher energy may reveal differences between B-LO 

and B-NLO
• Future work includes Bayesian analysis of proton capture on Beryllium

[1] T. Nakamula et al., Physical Review C 79, 035805 (2009)
[2] R. Reifarth et al., Physical Review C 77, 015804 (2008)
[3] G. Rupak, L. Fernando and A. Vaghani, Physical Review C 86, 044608 

(2012)
[4] D. S. Sivia and J. Skilling, Oxford University Press (2006)
[5] J. Skilling, Bayesian Analysis 1, 833 (2006)
[6] F. Feroz, M. P. Hobson and M. Bridges, Monthly Notices of the Royal As-

tronomical Society 398, 1601 (2009).
[7] K. Barbary, https://github.com/kbarbary/nestle
[8] R Reifarth et al., Journal of Physics 41, 053101 (2014)

This material is based upon work partly supported by the U.S. National Science Foundation under Grants No. DMR-1950208 and PHY-1913620. Any opinions, find-
ings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

• Optimal parameters and log-evidence (logZ) calculated
• Nested Sampling implemented using Python Nestle library [6, 7]
• Bayesian likelihood calculated as deviation between data and theory

Results

The 14C(n, γ)15C reaction rate is reflected in the cross section:

where

unknown parameters in red [3]
• The cross section is expressed 

as an expansion in Q/Λ:
 • Low-momentum scale 

Q~40 MeV
 • High-momentum scale 

Λ~100-200 MeV
• Two different models derived 
 based on different sets of 
 assumptions (TABLE 1)
• LO and NLO expansions for
 each model
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RELEVANCE
• Capture reaction 14C(n, γ)15C controls the carbon-nitrogen-oxygen cycle 

in the helium-burning regions of stars [1]
• Coulomb dissociation [1] and direct capture [2] data are compared with 

theory predictions
• Effectiveness of multiple EFT expansions are tested

RESEARCH OBJECTIVES
• The 14C(n, γ)15C cross section is calculated, and a systematic expansion is 

obtained [3] 
• Ambiguity regarding parameters sizes leads to multiple theoretical ex-

pressions

• Bayesian analysis is applied to 1) determined unknown parameters and 
2) compare the evidences for each theoretical expression

Introduction

TABLE 1. Parameter sizes
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FIG 2. MACS cross section with (right) and without (left) 23.3 keV dataFIG 1. 14C(n, γ)15C capture cross section

EFT all
EFT A LO, logZ = -4.46 ± 0.3
EFT A NLO, logZ = -2.95 ± 0.31

EFT B LO, logZ = 2.2 ± 0.29
EFT B NLO, logZ = 3.31 ± 0.3
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