
Comparing the Diversity and Similarity of Molecules Generated by GAN, VAE, Flow,
and Diffusion Models Using SELFIES

Colten Phillips,1, ∗ Isaac Cassulis,2, † Timothy Lund,1, ‡ and Wei Hu1, §

1Department of Computer Science, Houghton College, Houghton, NY 14744, USA
2Department of Data Science, Houghton College, Houghton, NY 14744, USA

(Dated: February 10, 2023)

Medical research and development is always an important issue, particularly as COVID-19 is
prevalent throughout the world. One way to speed up development of medicines and vaccines is
through molecular research, which is the aim of our study. We intended to compare and analyze the
efficacy of several reinforcement learning approaches, using the Python programming language, to
create new, valid molecules using SELFIES representations. SELFIES strings ensure valid molecu-
lar formats and are machine readable, which means SELFIES representations are ideal for machine
learning. Using variational auto-encoders (VAE), flow-based generative models, generative adversar-
ial models (GAN), and diffusion models, we compared their success in generating diverse molecules
as well as the similarity of generated molecules. We found the diffusion model outperformed at
generating dissimilar molecules, while the GAN model performed the best across all metrics.

Keywords: machine learning, neural networks, SELFIES, diffusion models, flows, variational autoencoders,
generative adversarial networks, molecular diversity

I. INTRODUCTION

We are exploring the performances of four machine
learning approaches to molecule generation using SELF-
IES. SELFIES is an improved version of SMILES, which
is a way to encode molecular representations into strings
in machine-readable format. While SMILES strings are
complex and often lead to invalid results in machine
learning, SELFIES strings minimize memory usage and
always produce valid molecular structures [1]. Resources
for understanding SELFIES can be found in [1] and [2].
To generate diverse molecules with SELFIES, we will be
using the following four approaches: variational autoen-
coders (VAE), generative adversarial networks (GAN),
flow-based models, and diffusion models. These four
models are trained on the QM9 dataset, and their per-
formance is compared to determine the best approach to
molecular generation using SELFIES.

II. RESEARCH DESIGN AND METHODS

A. Variational Autoencoders

The autoencoder is an unsupervised neural network
(NN) that compresses (reduces the dimensionality of) in-
put data through an encoder, learns from the compressed
data in the latent representation, and attempts to repro-
duce the input through decoding the latent space (decom-
pression). Compression, then, allows a NN to learn the
true size of the input, as if it is able to recreate data with

∗ colten.phillips22@houghton.edu
† isaac.cassulis22@houghton.edu
‡ timothy.lund23@houghton.edu
§ wei.hu@houghton.edu

FIG. 1. Overview of the four models, inspired by [5]

an input size of 400 dimensions from a compressed size of
125 hidden layers, the true size of the data is much less
than 400 [3]. This approach is useful as it allows models
to remove excess information from input data, as well as
generate new information from the input data, e.g., add
color to a black and white image, increase the resolution
of images, and remove unwanted blemishes [4].
The Variational Autoencoder (VAE) is one NN that

allows us to generate data from the latent space, and in-
stead of learning a particular estimate of a parameter,
the model learns the probability distribution of the pa-
rameter [6]. (FIG. 1).

B. Flow Models

Normalizing flows use sequences of invertible mappings
to transform a simple probability density into a com-
plex one, and the term ‘flow’ comes from this sequence
of invertible mappings (FIG. 1). The term ’normalizing’
stems from the initial distribution being modified until
we have a valid probability distribution [7]. If we take

mailto:colten.phillips22@houghton.edu
mailto:isaac.cassulis22@houghton.edu
mailto:timothy.lund23@houghton.edu
mailto:wei.hu@houghton.edu

2

data z, we can calculate the density pZ(z) by inverting
the transformation f with ϵ = f−1

θ (z) using the change-
of-variables formula:

pZ(z) = pε
(
f−1
θ (z)

) ∣∣∣∣det ∂f−1
θ (z)

∂z

∣∣∣∣ [8].
Each new distribution is substituted for the old distri-

bution, transforming and changing until we reach our tar-
get complexity. The transformation function fθ should
be invertible (reversable) and its Jacobian determinant
should be easy to compute [9]. A helpful resource for
understanding the Jacobian matrix and its determinant
can be found here: [10]. The training criterion for nor-
malizing flows is the negative log-likelihood log p(x) over
our training data D:

L(D) = − 1

|D|
∑
xϵD

log p(x) [9].

C. Diffusion Models

Diffusion models train using a forward and backward
process that preserves the dimensionality of the data
(FIG. 1). In the forward process, a Markov Chain
of diffusion steps is defined, which gradually adds ran-
dom noise to the training data until it approximates an
isotropic Gaussian distribution. In the backward process,
the trained network aims to generate the desired original
samples from Gaussian noise [5].

Given data x0 sampled from the real data distribu-
tion q(x), the forward process adds a small amount
of Gaussian noise in T steps, producing noisy samples
x1, . . . , xT . These steps are controlled by the variance
schedule {βt ∈ (0, 1)}Tt=1 [5].

We can sample step xt given the previous step xt−1 by
the conditional probability

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI).

Reparameterizing so that xt is conditioned on x0 rather
than xt−1 allows us to sample xt at any arbitrary time
step:

q(xt|x0) = N (xt;
√
ātx0, (1− ātI)),

where

āt =

T∏
i=1

ai, at = 1− βt.

The goal of the reverse process is to sample from
q(xt−1|xt), where we take xT ∼ N (0, I). We define a
model p defined by parameters θ to estimate these con-
ditional probabilities, such that

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).

where µθ and Σθ are parameterized as deep neural net-
works that predict the mean and covariance, respec-
tively [5].
We use variational lower bound to calculate the loss

between our model estimate pθ(xt−1|xt) and the true re-
verse conditional probability q(xt−1|xt) [5].

D. Generative Adversarial Networks

Generative adversarial networks (GANs) utilize an
actor-critic architecture with two models - the generator
and discriminator (FIG. 1). The generator G functions
as the actor, learning the real data distribution to gen-
erate synthetic samples given some noise variable input
z. The discriminator D acts as the critic, and estimates
the probability of a given sample coming from the real
dataset. The two models play a zero-sum game, where
the generator is optimized to trick the discriminator and
the discriminator is optimized to distinguish fake samples
from the real ones [11].
We define the loss function

L(G,D) =

∫
x

pr(x) log (D(x)) + pg(x) log (1−D(x))dx

where pr is the distribution over real data x, and pg is the
generator’s learned distribution over x. G is optimized
when pg approaches pr [11].

III. RESULTS

The models used by Krenn et al. (2020) displayed
molecular diversity as the number of unique molecules di-
vided by the number of samples from the dataset [2]. We
looked to improve their measurements of molecular di-
versity by adding fingerprinting to our models. A molec-
ular fingerprint is a collection of structural information
about a molecule that is encoded in bit strings. Using
RDKit, which uses a Daylight-like fingerprint based on
hashing molecular subgraphs, we can compare the Tani-
moto similarity of generated molecules’ fingerprints. The
Tanimoto similarity metric was chosen as it performs fa-
vorably compared with several other similarity metrics
[12], [13], and was declared to be the best similarity co-
efficient when the size of molecules is unknown [14]. The
Tanimoto coefficient ranges from 0 to 1 and measures the
number of common bits; the closer to 0 the number is, the
fewer bits the molecules have in common, and the closer
to 1 the number is, the more bits the molecules have in
common. Validity is the measurement of whether or not
generated molecules are syntactically valid. Our mea-
surement of reconstruction measures the ability of the
models, given a particular molecule, to reconstruct the
original molecule from the latent space. All our models
sampled from the 0SelectedSMILESQM9 dataset [2].
Each model ran for 1000 episodes with a sample size of
1000, and used SELFIES encoding. Where applicable,

3

our learning rate was always 0.0001. The architectures
of the VAE and GAN models are identical to the models
used in [2].

We worked with four different flows, with varying de-
grees of success, modifying the flows found in [15]. We
adjusted the prior distribution to be the length of the
maximum size one of the molecules could be in a one
hot encoded state which is 378. We also adjusted the
flow to have only 1 flow model of size 378 × 378. Of
the four flows, only two produced reliable results: the
Affine Half Flow and the Invertible Flow. The other two,
the Inverse Autoregressive Flow and the Affine Constant
Flow produced unreliable results as discussed later. For
our diffusion model, we used the architecture found in
[16]. We adjusted the three layers in the network to be
378× 1492, 1492× 1492, and 1492× 756 respectively.

IV. CONCLUSION

Every model except the VAE performed at 100% in our
validity metric, which is expected since none of the other
models feature any form of compression (FIG. 4). The
VAE still performed respectably, with an average near
81%. The GAN performed best in our diversity metric
with a score near 58%, and the Invertible flow was close
behind, around 50% (FIG. 2). The diffusion model per-
formed very poorly, with an average diversity of under
3%. After 1000 episodes, all models except diffusion had
a Tanimoto similarity between 0.051 and 0.055, while
the diffusion scored much closer to 0 (FIG. 3). Remem-
ber that the lower the Tanimoto similarity, the fewer bits

molecules have in common. Lastly, the VAE model per-
formed reconstruction nearly 82% of the time, while the
Invertible flow was much lower, around 7.5% (FIG. 5).
From our results, the diffusion model is by far the best

at generating dissimilar molecules; however, it generates
significantly fewer unique molecules than the other mod-
els. The GAN model had the highest diversity score,
generating the most unique molecules and had the sec-
ond lowest Tanimoto similarity; thus, the GAN is the
best model for producing unique, diverse molecules. See
Table I for a breakdown of the final values for all models.
However, there were flows that performed better, but had
issues discussed below.

V. FUTURE WORK

Both the Affine Constant Flow and the Inverse Au-
toregressive Flow returned unreliable results due to the
models returning invalid outputs; we were unable to de-
termine exactly why, given time restraints. However, as
the below graphs show, both these flow models performed
very well prior to the issues occurring (FIG. 7, FIG. 8).
For future work, our first and obvious step would be to
investigate the causes for these issues, and attempt solu-
tions. With no prior indication, the models seem to fail at
arbitrary episodes during training. Some initial research
indicates that this may be an issue with the gradient, but
we were unable to come to any conclusions. These two
flows scored very high in diversity and reconstruction,
and seem very promising if the issues can be sorted out
(FIG. 6, FIG. 9).

[1] A. Aspuru-Guzik, “Molecular graph representations and-
selfies: A 100 percent robust molecular string represen-
tation,” (2021).

[2] M. Krenn, F. H. A. Nigam, P. Friederich, and A. Aspuru-
Guzik, “Selfies,” (2020).

[3] P. Foy, “Generative modeling: What is a variational au-
toencoder (vae)?” (2021).

[4] R. Chandradevan, “Autoencoders are essential in deep
neural nets,” (2017).

[5] L. Weng, lilianweng.github.io/lil-log (2021).
[6] R. Neo, “Beginner guide to variational autoencoders

(vae) with pytorch lightning,” (2021).
[7] D. J. Rezende and S. Mohamed, “Variational infer-

ence with normalizing flows,” (2016), arXiv:1505.05770
[stat.ML].

[8] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and
J. Tang, CoRR abs/2001.09382 (2020), 2001.09382.

[9] L. Weng, lilianweng.github.io/lil-log (2018).
[10] S. Cristina, “A gentle introduction to the jacobian,”

(2021).
[11] L. Weng, lilianweng.github.io/lil-log (2017).
[12] A. Bender, J. L. Jenkins, J. Scheiber, S. C. K. Sukuru,

M. Glick, and J. W. Davies, Journal of Chemical Infor-
mation and Modeling 49, 108 (2009).

[13] D. Bajusz, A. Rácz, and K. Héberger, Journal of Chem-
informatics 7 (2015), 10.1186/s13321-015-0069-3.

[14] P. Willett, Drug Discovery Today 11, 1046 (2006).
[15] A. Karpathy, “Normalizing flows,” (2019).
[16] ACIDS, “Denoising diffusion probabilistic models,”

(2021).

https://aspuru.substack.com/p/molecular-graph-representations-and
https://aspuru.substack.com/p/molecular-graph-representations-and
https://aspuru.substack.com/p/molecular-graph-representations-and
https://github.com/aspuru-guzik-group/selfies
https://www.mlq.ai/what-is-a-variational-autoencoder/
https://www.mlq.ai/what-is-a-variational-autoencoder/
https://towardsdatascience.com/autoencoders-are-essential-in-deep-neural-nets-f0365b2d1d7c
https://towardsdatascience.com/autoencoders-are-essential-in-deep-neural-nets-f0365b2d1d7c
https://lilianweng.github.io/lil-log/2021/07/11/diffusion-models.html
https://towardsdatascience.com/beginner-guide-to-variational-autoencoders-vae-with-pytorch-lightning-13dbc559ba4b
https://towardsdatascience.com/beginner-guide-to-variational-autoencoders-vae-with-pytorch-lightning-13dbc559ba4b
http://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1505.05770
https://arxiv.org/abs/2001.09382
http://arxiv.org/abs/2001.09382
http://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
https://machinelearningmastery.com/a-gentle-introduction-to-the-jacobian/
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
https://doi.org/ 10.1021/ci800249s
https://doi.org/ 10.1021/ci800249s
https://doi.org/10.1186/s13321-015-0069-3
https://doi.org/10.1186/s13321-015-0069-3
https://doi.org/https://doi.org/10.1016/j.drudis.2006.10.005
https://github.com/karpathy/pytorch-normalizing-flows
https://github.com/acids-ircam/diffusion_models

4

FIG. 2. Diversity Measurements For All Models (Smoothed)

FIG. 3. Tanimoto Similarity For All Models (Smoothed)

5

FIG. 4. Validity Measurements For All Models (Smoothed)

FIG. 5. Reconstruction Rates For the VAE and Flow
(Smoothed)

Model Final Validity Final Diversity Final Tanimoto Final Reconstruction

VAE 84.3000% 31.2000% 0.0545 81.1400%

GAN 100.0% 61.5000% 0.0513 N/A

Flow 100.0% 47.9000% 0.0551 7.4290%

Diffusion 100.0% 0.1000% 0.0000 N/A

TABLE I. Final Values of Each Model After 1000 Episodes

6

FIG. 6. Diversity Measurements For the IAF and Affine Con-
stant Flow (Smoothed)

FIG. 7. Tanimoto Similarity For the IAF and Affine Constant
Flow (Smoothed)

7

FIG. 8. Validity Measurements For the IAF and Affine Con-
stant Flow (Smoothed)

FIG. 9. Reconstruction Rates of the IAF and Affine Constant
Flow (Smoothed)

	Comparing the Diversity and Similarity of Molecules Generated by GAN, VAE, Flow, and Diffusion Models Using SELFIES
	Abstract
	Introduction
	Research Design and Methods
	Variational Autoencoders
	Flow Models
	Diffusion Models
	Generative Adversarial Networks

	Results
	Conclusion
	Future Work
	References

