
Numerical Range Over Finite Fields

by

Timothy Lund

Submitted in partial fulfillment of the requirement for

Major Honors in Mathematics

Houghton University, Houghton, NY
May 2023

Honors Committee

Dr. Rebekah Yates, Project Advisor

Dr. Katrina Koehler, Reader 1

Dr. Brandon Bate, Reader 2

Contents

1 Introduction 4

1.1 Key Terms . 4

1.2 Self-Orthogonality . 5

1.3 Eigenvalues & Eigenvectors . 6

1.4 Unitary Matrices . 9

1.5 Approach . 11

2 Computational Tools 11

2.1 Finite Field Linear Algebra . 11

2.1.1 Scalar Division . 11

2.1.2 Zp[i] Multiples of Vectors . 13

2.1.3 Matrix Inverses . 13

2.2 Generative Methods . 14

2.2.1 Unit and Self-Orthogonal Vectors . 14

2.3 Numerical Range Solver . 15

3 Investigating 2× 2 Matrices Over Z7[i] 16

3.1 Preliminary Observations . 16

3.2 Structure of the Numerical Range . 17

3.3 Approaches . 22

3.3.1 Algebra of the Numerical Range . 22

3.3.2 Unitary Similarity of Lund Matrices 25

4 Conclusion 26

2

5 Appendix I: Selected Code Listings for linalg_Zpi() 28

6 Appendix II: Selected Code Listing for gen_norm1() 31

7 Appendix III: Selected Code Listing for numrange_Zpi() 33

3

1 Introduction

In this honors project, we examine the numerical ranges of square matrices with entries from
finite fields, specifically Zp[i]. The classical numerical range over the complex numbers was
first defined by Toeplitz [1] in 1918, and further developed with Hausdorff [2]. Then in 1951,
Kippenhahn defined the boundary generating curve and classified the numerical ranges of
all 3 × 3 matrices over the complex numbers [3] [4]. However, very little investigation has
been done on numerical ranges over finite fields, with the first of formalization of the finite
field numerical range proposed by Coons, et al. in 2016 [5]. This project will examine an
emerging area of math research, drawing from established mathematical disciplines such as
linear algebra, abstract algebra, and matrix analysis.

Following the work done by Coons, et al., we consider the numerical range of matrices over
finite fields Zp[i]. A majority of our focus will be dedicated to matrices with nonzero eigen-
vectors x ∈ Zp[i]

n with the property that x∗x = 0. Such vectors, termed self-orthogonal
vectors in [6], cannot exist over the complex numbers and have only recently garnered
interest in the research on finite field numerical ranges. Prior to [7], matrices with self-
orthogonal eigenvectors were explicitly excluded from consideration. We seek to describe
the structures of numerical ranges of certain matrices with self-orthogonal eigenvectors and
note additional properties of self-orthogonal vectors encountered in our investigation.

1.1 Key Terms

To understand the concept of finite field numerical range, we must recall the following
definitions.

Definition 1.1. A field F is a set of numbers with multiplication (·) and addition (+)
defined on the set such that for all a, b, c ∈ F, the following properties hold:

• Closure: a+ b ∈ F, and a · b ∈ F,

• Associativity: (a+ b) + c = a+ (b+ c), and (a · b) · c = a · (b · c),

• Commutativity: a+ b = b+ a, and a · b = b · a,

• Existence of identity elements: there exist 0, 1 ∈ F such that a+ 0 = a and a · 1 = a,

• Existence of additive inverses: there exists −a ∈ F such that a+ (−a) = 0

• Existence of multiplicative inverses: for a ̸= 0, there exists a−1 ∈ F such that
a · a−1 = 1, and

• Distributivity: a · (b+ c) = (a · b) + (a · c).

The set of n × n matrices with elements drawn from the field F is denoted Mn(F). As a
specific example of a field, we consider Zp[i] defined below.

4

Definition 1.2. The set Zp[i] is given by

Zp[i] = {a+ bi : a, b ∈ Zp, i =
√
−1},

where Zp = {0, 1, . . . , p− 1} is the set of integers modulo p.

For the remainder of this paper, we will consider Zp[i] with p a prime congruent to 3 modulo
4 in order to ensure that i =

√
−1 ̸∈ Zp, which is true by the law of quadratic reciprocity.

This then brings us to the definition of the finite field numerical range given in [5].

Definition 1.3. Let p denote a prime congruent to 3 modulo 4 and let M ∈Mn(Zp[i]). We
define the finite field numerical range of M to be

W (M) = {x∗Mx : x ∈ Zp[i]
n,x∗x = 1},

where x∗ is the conjugate transpose of x.

As demonstrated by Ballico [8], this definition for the finite field numerical range can be
extended to the field Fq2 (where q = ps for some prime p and positive integer s), which is
the degree two Galois extension of Fq, the finite field with q elements. Zp[i] is a degree two
Galois extension of Zp for p ≡ 3 mod 4.

1.2 Self-Orthogonality

To understand self-orthogonal vectors, we must recall the following definition of a norm in
a vector space.

Definition 1.4. A norm is a scalar-valued function from a vector space to the real numbers
such that for all vectors x and y and any scalar α, the following properties hold:

• Positive-definiteness: ∥x∥ ≥ 0 and ∥x∥ = 0 if and only if x = 0,

• Triangle inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥

• Homogeneity: ∥αx∥ = |α|∥x∥

For a vector x over the complex numbers, we compute the norm of x by

∥x∥ =
√
x∗x.

Note that this function fulfills all of the properties listed in definition 1.4. However, the
above formulation fails to extend to vectors over finite fields, as seen in the following exam-
ple.

Example 1.5. Let x =

[
i

2 + 3i

]
be a vector in Z7[i]

2. Though x ̸= 0, we note that

x∗x = 1 + 4 + 9 ≡ 0 mod 7.

5

This leads us to the following definition.

Definition 1.6. A vector x ∈ Fn
q2 is self-orthogonal if x∗x = 0 and x ̸= 0.

Because of the existence of self-orthogonal vectors, the function ∥x∥ =
√
x∗x fails to be

positive-definite over finite fields and is thus not a norm. However, we may still take
advantage of the useful properties of x∗x in finite fields, as in the definition of W (M) which
uses the set of x such that x∗x = 1.

1.3 Eigenvalues & Eigenvectors

To understand matrices with self-orthogonal eigenvectors and the challenge they pose in
our research of finite field numerical ranges, we must recall the following definitions.

Definition 1.7. A scalar λ is an eigenvalue of matrix M if there exists some vector x such
that Mx = λx. The corresponding vector x is called an eigenvector of M .

Definition 1.8. We define the spectrum of an n× n matrix M to be the set

σ(M) = {λ1, λ2, . . . , λk},

where λi are the eigenvalues of M and 1 ≤ k ≤ n.

In examining the spectra of matrices over Fq2 , Basha showed that the existence of nonzero
eigenvectors x for every eigenvalue ensures that the spectrum of a matrix is a subset of
its numerical range, so long as x is not self-orthogonal [7]. This result is formalized in the
following theorem.

Theorem 1.9. Let M ∈Mn(Fq2) with σ(M) = {λ1, λ2, . . . , λk}. If for all λi ∈ σ(M) there
exists a nonzero eigenvector xi such that xi

∗xi ̸= 0, then σ(M) ⊆W (M).

However, Basha noted that in finite fields it is possible for a matrix to have self-orthogonal
eigenvectors. In these cases, the spectrum will not necessarily be a subset of the numerical
range.

Example 1.10. Let M be the following matrix in M2(Z7[i]):

M =

[
6 + 6i 4 + i
3 + 6i 3 + 4i

]
.

M has eigenvalues 6 + i and 3 + 2i, corresponding to eigenvectors[
i

2 + 3i

]
and

[
i

2 + 4i

]
,

both of which are self-orthogonal. Computing W (M), we find that

W (M) = {2i, 1 + 5i, 2 + i, 3 + 4i, 4, 5 + 3i, 6 + 6i}.

Note that our eigenvalues 6 + i, 3 + 2i ̸∈W (M) (see Figure 1).

6

Figure 1: Numerical range (red circles) and eigenvalues (blue squares) for Example 1.10 (eigenvec-
tors listed in the lower left corner of the plot)

To better understand the numerical ranges of matrices with self-orthogonal eigenvectors, it
is necessary to construct examples of such matrices. This leads us to the following theorem.

Theorem 1.11. If M ∈ Mn(Fq2) is a matrix with n linearly independent, self-orthogonal
eigenvectors then M = PDP−1, where P is a matrix with linearly independent, self-
orthogonal columns and D is a diagonal matrix. The eigenvectors of M are given by the
columns of P , and the spectrum of M is given by the values along the diagonal of D.

Proof. Let M ∈ Mn(Fq2) be a matrix with n linearly independent, self-orthogonal eigen-
vectors. By [6], the eigenvectors form a self-orthogonal basis for our vector space. The final
result follows from [9].

The process of constructing a matrix with linearly independent, self-orthogonal eigenvectors
is demonstrated in the following example.

Example 1.12. Suppose we wish to construct a matrix M ∈ M2(Z7[i]) with eigenvalues
λ1 = 5i and λ2 = 2 + 5i corresponding to the eigenvectors

x1 =

[
1 + 3i
4 + 3i

]
and x2 =

[
3i

1 + 2i

]
.

Since x1 and x2 are not multiples of each other, they are linearly independent. Furthermore,
we observe that

x1
∗x1 = 1 + 9 + 16 + 9 ≡ 0 mod 7

7

and

x2
∗x2 = 9 + 1 + 4 ≡ 0 mod 7.

Thus x1 and x2 are self-orthogonal. Let P be the matrix with x1 and x2 as columns.

P =

[
1 + 3i 3i
4 + 3i 1 + 2i

]
.

Since x1 and x2 are linearly independent, P is invertible. We can calculate P−1 by aug-
menting P with the identity matrix and row reducing.[

1 + 3i 3i 1 0
4 + 3i 1 + 2i 0 1

]
R1÷(1+3i)→R1−−−−−−−−−−−−−−→

[
1 3 + i 5 + 6i 0

4 + 3i 1 + 2i 0 1

]
R2−(4+3i)R1→R2−−−−−−−−−−−−−−→

[
1 3 + i 5 + 6i 0
0 6 + 3i 5 + 3i 1

]
R2÷(6+3i)→R2−−−−−−−−−−−−−−→

[
1 3 + i 5 + 6i 0
0 1 6 + i 2 + 6i

]
R1−(3+i)R2→R1−−−−−−−−−−−−−−→

[
1 0 2 + 4i i
0 1 6 + i 2 + 6i

]
.

Therefore

P−1 =

[
2 + 4i i
6 + i 2 + 6i

]
.

Now let D be the diagonal matrix with λ1 and λ2 in the diagonal entries.

D =

[
5i 0
0 2 + 5i

]
.

Calculating M = PDP−1 yields

M =

[
1 + 6i 6 + 5i
1 + 5i 1 + 4i

]
.

We observe that

Mx1 =

[
1 + 6i 6 + 5i
1 + 5i 1 + 4i

] [
1 + 3i
4 + 3i

]
=

[
6 + 5i
6 + 6i

]
= 5i

[
1 + 3i
4 + 3i

]
= λ1x1

and

Mx2 =

[
1 + 6i 6 + 5i
1 + 5i 1 + 4i

] [
3i

1 + 2i

]
=

[
6 + 6i
6 + 2i

]
= (2 + 5i)

[
3i

1 + 2i

]
= λ2x2.

8

Thus, we have verified that M has eigenvalues λ1 and λ2 corresponding to eigenvectors x1

and x2.

1.4 Unitary Matrices

Unitary matrices are an important class of matrices that interact in useful ways with both
the numerical range and self-orthogonal vectors.

Definition 1.13. A matrix U is unitary if U∗U = I.

Definition 1.14. Two matrices A and B are unitarily similar if there exists a unitary
matrix U such that A = U∗BU .

A central property of unitary matrices that we will use in our investigation is the fact that
the numerical range is invariant under unitary similarity (Theorem 1.16). The proof of this
theorem requires the result of the following lemma.

Lemma 1.15. If x ∈ Fn
q2 such that x∗x = 1 and U ∈Mn(Fq2) is unitary, then (Ux)∗(Ux) =

1.

Proof. Let x ∈ Fn
q2 such that x∗x = 1 and let U ∈Mn(Fq2) be unitary. Since (AB)∗ = B∗A∗

for any two matrices A and B for which the product AB is defined, we have

(Ux)∗(Ux) = x∗U∗Ux = x∗x = 1.

This leads us to the following theorem.

Theorem 1.16. The finite field numerical range is invariant under unitary similarity; that
is, for M,U ∈Mn(Fq2) with unitary U ,

W (M) = W (U∗MU).

Proof. Let M ∈ Mn(Fq2) and let U ∈ Mn(Fq2) be unitary. Let a ∈ W (U∗MU). There
exists x ∈ Fn

q2 with x∗x = 1 such that a = x∗U∗MUx = (Ux)∗MUx. Define y = Ux.

By Lemma 1.15, y∗y = 1, so a = y∗My ∈ W (M). Therefore W (U∗MU) ⊆ W (M). The
reverse inclusion follows similarly. Thus W (M) = W (U∗MU).

The next useful property of unitary matrices follows from the fact that U∗U = I.

Lemma 1.17. If U is unitary and U is the matrix containing the conjugates of the entries
in U , then UTU = I and UUT = I.

9

Proof. We note first that, since (AB)T = BTAT ,

UTU = (U∗U)T = IT = I.

Similarly, we observe that

UUT = (UU∗)T = IT = I.

Since our investigation centers on self-orthogonal vectors, it is also helpful to know the
following property of multiplication of unitary matrices and self-orthogonal vectors.

Theorem 1.18. If U ∈ Mn(Fq2) is unitary and v ∈ Fn
q2 is self-orthogonal, then Uv is

self-orthogonal.

Proof. Let v ∈ Fn
q2 be self-orthogonal, so v∗v = 0. We then compute

(Uv)∗(Uv) = v∗U∗Uv

= v∗v

= 0

Therefore Uv is self-orthogonal.

In addition, it is helpful to know properties of multiplication of the transpose of a unitary
matrix with a self-orthogonal vector. In Theorem 1.20 we use the form (vTU)T = UTv
for a self-orthogonal vector v and unitary matrix U , since this is the form we use in later
proofs. The proof of Theorem 1.20 relies on the following lemma.

Lemma 1.19. If v ∈ Fn
q2 is self-orthogonal, then vTv = 0.

Proof. Let v ∈ Fn
q2 be self-orthogonal. We observe that

vTv = (v∗v)T = 0T = 0.

Theorem 1.20. If U ∈Mn(Fq2) is unitary and v ∈ Fn
q2 is self-orthogonal, then

(
vTU

)T
is

self-orthogonal.

Proof. Let U ∈Mn(Fq2) be unitary and let v ∈ Fn
q2 be self-orthogonal. Then((

vTU
)T)∗ (

vTU
)T

= (vTU)
(
vTU

)T
=
(
v∗U

) (
vTU

)T
= v∗UUTv

= v∗v

= 0.

10

1.5 Approach

In our investigation, we primarily consider 2× 2 matrices over the field Z7[i]. We construct
matrices with two self-orthogonal eigenvectors and arbitrary eigenvalues via the diagonal-
ization method described in Theorem 1.11, and then we calculate and graph the numerical
ranges of these matrices. We examine the structures of these numerical ranges and propose
a rule to describe them.

Simultaneous with our investigation, we also develop a set of computational tools to perform
calculations and generate examples. These tools are implemented in Python and created in
response to challenges that arise in the research process.

2 Computational Tools

Our computational tools for this investigation are packaged in the Python modules linalg_Zpi.py
and numrange_Zpi.py, as well as Jupyter notebooks gen_norm0.ipynb and gen_norm1.ipynb.
The linalg_Zpi module handles basic linear algebra over finite fields, numrange_Zpi al-
lows us to calculate and graph numerical ranges, and gen_norm0 and gen_norm1 generate
all self-orthogonal and unit vectors (respectively) in a given finite field.

2.1 Finite Field Linear Algebra

The linalg_Zpi module contains a single class linalg_Zpi(), which is initialized with the
following parameters.

• n: The dimension of the matrices to be handled, and

• p: The prime p congruent to 3 modulo 4 that determines the finite field Zp[i].

The linalg_Zpi() class is designed to be extendable over arbitrarily large matrices over
Zp[i] for any prime p congruent to 3 modulo 4. However, a vast majority of our research is
restricted to the case where n = 2 and p = 7, and there may still be unseen limitations to
the generalizability of the class methods. The linalg_Zpi() class depends on numpy and
itertools. For more details about this module, see selected code listings in Appendix I.

2.1.1 Scalar Division

Division in finite fields tends to be counterintuitive, as illustrated in Example 2.1. Further-
more, the % operator in Python, defined such that a % p yields the remainder of a when
divided by p, is not sufficient to ensure an output in Zp when a ̸∈ Zp, as demonstrated
in Example 2.2. Therefore, additional methods must be implemented in linalg_Zpi() to
handle more complex calculations.

11

Example 2.1. We know that 8 ≡ 1 mod 7; therefore 1/2 ≡ 8/2 ≡ 4 mod 7. Alternatively,
we can think of 1/2 as the number that we multiply by 2 to get 1. Since 4 · 2 = 8 ≡ 1 mod 7,
it follows that 4 ≡ 1/2 mod 7. This means that 1÷ 2 = 4 in Z7.

Example 2.2. As shown in Example 2.1, 1 ÷ 2 = 4 in Z7. However, in base Python, we
observe the following.

>>> 1/2 % 7

0.5

This creates a problem, since 0.5 ̸∈ Z7. Therefore the % operator alone is insufficient for
our purposes in this investigation.

To ensure that a ÷ b yields a result in Zp for all a, b ∈ Zp, we created a “quotient table”
that allows us to access the quotient of any two numbers in Zp. This is stored in a numpy

array as the class variable self.div_tbl (see Listing 2). As an example, we consider the
quotient table for Z7 below.

>>> from linalg_Zpi import linalg_Zpi

>>> linalg = linalg_Zpi(n=2, p=7)

>>> linalg.div_tbl

array([[0, 0, 0, 0, 0, 0, 0],

[0, 1, 2, 3, 4, 5, 6],

[0, 4, 1, 5, 2, 6, 3],

[0, 5, 3, 1, 6, 4, 2],

[0, 2, 4, 6, 1, 3, 5],

[0, 3, 6, 2, 5, 1, 4],

[0, 6, 5, 4, 3, 2, 1]])

In the quotient table, we indicate the dividend by the row and the divisor by the column.
For example, we can compute 1 ÷ 2 in Z7 by accessing the entry at self.div_tbl[2,1],
yielding the correct value of 4. Note that each entry in the 0th row of the table indicates
the quotient of a number divided by 0. As a result of how the quotient table is generated
(see Listing 3 in the appendix), the 0th row is (rather unintuitively) filled with 0s rather
than undefined values, but we incorporate additional safeguards to raise an exception in
the case of division by 0.

The quotient table is accessed directly via the method self.div_real(), which takes in ar-
guments a and b as the dividend and divisor, respectively. The method self.div_complex()
computes quotients of complex numbers and calls self.div_real().

Many other methods in the linalg_Zpi() class rely on the quotient table, but several of
them were implemented before our division methods arrived at their current robust forms,
and thus take approaches that work around the need for certain actions. The self.mult()
method described in the next section is one such example. These methods may later be
streamlined to use the current division methods.

12

2.1.2 Zp[i] Multiples of Vectors

Alongside performing division in finite fields, it is also extremely important for our gen-
erative methods (section 2.2) to be able to determine if two vectors are Zp[i] multiples of
each other. To this end, we developed the method self.mult(), which takes in vectors v1
and v2 as arguments. If v1 and v2 are Zp[i] multiples such that v1 = (u+ vi) v2 for some
u, v ∈ Zp, then the method returns the number u+ vi. If v1 and v2 are not Zp[i] multiples,
then the method returns None.

To perform calculations, the self.mult()method employs a helper function solve_mult(),
which calculates the quotient of each pair of corresponding elements in v1 and v2. For a
pair of corresponding elements a + bi and c + di from v1 and v2 respectively, we seek to
find the values u, v ∈ Zp such that

c+ di = (a+ bi)(u+ vi)

= (au− bv) + (av + bu)i.

We express this problem as an augmented matrix, which we manipulate to reduced row
echelon form via the solve_mult() function (see Listing 4).[

a −b c
b a d

]
rref−−→

[
1 0 u
0 1 v

]

The outputs of solve_mult() are checked for each pair of corresponding elements in v1

and v2; if they all match, the value u+ vi is returned.

2.1.3 Matrix Inverses

The linalg_Zpi() also contains a method self.inv(), which takes in an invertible matrix
M and returns its inverse. The inverse of M is calculated through a brute-force row reduction
process. We augment M with the identity matrix and reduce the augmented matrix to
reduced row echelon form. While there exist simpler methods to invert a matrix (such as
the determinant method described in [9]), at the time of implementing self.inv() we had
not yet found a proof verifying that such methods were valid for matrices over finite fields.

Our row reduction approach uses nested loops (see Listing 5). At the beginning of the outer
loop, we rearrange the rows of our matrix so that the ith element of the ith row is nonzero;
the entire ith row is then divided by this ith element. Multiples of the ith row are then
subtracted from each jth row for j > i so that the ith element of the ith row is the last
nonzero element in its column. After using this process to arrive at row echelon form, a
second loop from the last row of the matrix subtracts multiples of each row i from every
row k, k < i, to finally arrive at reduced row echelon form.

It is important to note that if we try to call self.inv(M) for a non-invertible matrix M, the
program will inevitably encounter a zero-division error and throw an exception.

13

2.2 Generative Methods

To calculate the numerical range of a matrix of a given dimension over a given field, it
is necessary to have a list of all vectors x such that x∗x = 1 (for the sake of brevity, we
will refer to these as unit vectors). Additionally, to construct matrices with self-orthogonal
eigenvectors, we generate a list of all self-orthogonal vectors of a given dimension over a given
field. For this purpose, we develop the code in the Jupyter notebooks gen_norm1.ipynb

and gen_norm0.ipynb, which handle the exhaustive generation of unit and self-orthogonal
vectors, respectively. For more details about these notebooks, see selected code listing in
Appendix II.

2.2.1 Unit and Self-Orthogonal Vectors

Our code for exhaustively generating unit and self-orthogonal vectors in Zp[i]
n is found

in the Jupyter notebooks gen_norm1.ipynb and gen_norm0.ipynb. The two notebooks
each contain a single class gen_norm1() and gen_norm0(), respectively, both of which are
initialized with the following parameters.

• mod: The prime p congruent to 3 modulo 4 that determines the finite field Zp[i]
(equivalent to p in linalg_Zpi()), and

• size: The dimension of the vectors to be generated (equivalent to n in linalg_Zpi()).

The classes both depend on numpy and itertools imports, as well as the linalg_Zpi()

module.

Both gen_norm1() and gen_norm0() generate vectors x in much the same way. Each
entry of each vector, being complex, is defined by two values a, b ∈ Zp. Thus, each vector
can be represented by a sequence of 2n values in the form (a1, b1, . . . , an, bn); we generate
all such sequences using itertools. For each sequence, we calculate the squared sum
a21 + b21 + . . . + a2n + b2n modulo p, which is equal to x∗x. For gen_norm1() we keep all
sequences with a square sum of 1, and for gen_norm0() we keep all sequences with a square
sum of 0 (omitting the sequence of all 0s, as this represents the zero vector). All sequences
with the correct square sum are rearranged into numpy vectors.

When generating matrices with self-orthogonal eigenvectors, we only consider eigenvec-
tors that are linearly independent in order to use the diagonalization method described in
Theorem 1.11. We therefore employ the linalg_Zpi.mult() method to remove any Zp[i]
multiples present in the list generated from gen_norm0(). Similarly with our unit vec-
tors from gen_norm1(), the existence of multiple units in a finite field may result in unit
multiples of a vector that can be removed from consideration.

For each class, we export the final list of vectors as a .npz file. These files are referenced
whenever we require unit or self-orthogonal vectors of a given dimension over a given field.

14

Figure 2: The plotted output of numrange_Zpi.W1() for a random matrix over Z7[i].

2.3 Numerical Range Solver

Our tool for calculating and plotting the numerical range of a matrix can be found in the
module numrange_Zpi.py. This module contains a single class numrange_Zpi(), which
takes in the following parameters.

• n: The dimension of the matrix to be handled,

• p: The prime p congruent to 3 modulo 4 that determines the finite field Zp[i], and

• M: The matrix for which to compute the numerical range.

The numrange_Zpi() class contains the method self.W1(). This method self.W1() com-
putes the finite field numerical range of M, referencing the relevant set of unit vectors gener-
ated by gen_norm1(). The method takes in a single Boolean parameter plot; if plot is set
to True, the program will generate a plot of the numerical range. For more details about
this module, see selected code listing in Appendix III.

15

3 Investigating 2× 2 Matrices Over Z7[i]

3.1 Preliminary Observations

Using our computational modules, we generate pseudo-random combinations of two eigen-
values and two linearly independent, self-orthogonal eigenvectors and construct matrices
from them using the diagonalization method in Theorem 1.11. We proceed to plot the nu-
merical range of our random matrices and look for patterns. We make the key observation,
evident in Figure 3, that the eigenvalues of our matrices are not contained in the numerical
ranges for any of the generated examples. This leads us to the following conjecture.

Conjecture 3.1. If M ∈M2(Z7[i]) has unique eigenvalues λ1 and λ2 corresponding to two
linearly independent, self-orthogonal eigenvectors, then λ1, λ2 ̸∈W (M).

Figure 3: Numerical ranges (red circles) and eigenvalues (blue squares) for randomly-
generated matrices with self-orthogonal eigenvectors. Eigenvectors are listed in the corners
of each subplot.

For the sake of brevity, we introduce the term Lund matrices to refer to the class of matrices
considered in Conjecture 3.1.

16

Definition 3.2. A matrix M ∈M2(Z7[i]) is a Lund matrix if it has two unique eigenvalues
corresponding to two linearly independent, self-orthogonal eigenvectors.

In Conjecture 3.1, we do not consider the the trivial case where our matrix has one eigenvalue
of multiplicity two, since this is equivalent to a multiple of the identity matrix. Coons et
al. demonstrated that W (λI) = {λ} for some λ ∈ Z7[i], and we prove the same result using
our diagonalization method in the following theorem.

Theorem 3.3. If M = λI ∈M2(Z7[i]) for some λ ∈ Z7[i], then W (M) = {λ}.

Proof. Let M = λI ∈ M2(Z7[i]) for some λ ∈ Z7[i]. Since all vectors in Z7[i]
2 are eigen-

vectors of M , we pick two linearly independent, self-orthogonal vectors z1 and z2 to be
eigenvectors. By Theorem 1.11,

M =
[
z1 z2

] [λ 0
0 λ

] [
z1 z2

]−1
.

Each element of W (M) can be expressed as x∗Mx for some unit vector x. We observe that

x∗Mx = x∗ [z1 z2
] [λ 0

0 λ

] [
z1 z2

]−1
x

= λx∗ [z1 z2
] [1 0

0 1

] [
z1 z2

]−1
x

= λx∗ [z1 z2
] [
z1 z2

]−1
x

= λx∗x

= λ.

Therefore W (M) = {λ}.

Another interesting observation we see in the examples of Figure 4 is that Lund matrices
with the same eigenvalues but different eigenvectors appear to have the same numerical
range regardless of the specific eigenvectors.

Conjecture 3.4. Let A,B ∈M2(Z7[i]) be Lund matrices that share the eigenvalues λ1 and
λ2. Let A have eigenvectors x1 and x2, and let B have eigenvectors y1 and y2. Then
W (A) = W (B).

3.2 Structure of the Numerical Range

Examining our randomly-generated examples, we observe that the numerical range in each
example is, in fact, a line in Z7[i].

17

Figure 4: Numerical ranges for matrices with the same eigenvalues and different self-
orthogonal eigenvectors.

18

Example 3.5. Consider the upper-left subplot in Figure 4, which shows the numerical range
for the matrix

M =

[
5 + 6i 6i

i 4 + 5i

]
.

The set of points in the numerical range is

W (M) = {2i, 1, 2 + 5i, 3 + 3i, 4 + i, 5 + 6i, 6 + 4i}.

Taking any pair of these points, we can calculate the slope of this line in Z7. For example,
taking 2i and 1:

0− 2

1− 0
≡ −2 ≡ 5 mod 7;

taking 2i and 2 + 5i:

5− 2

2− 0
≡ 3

2
≡ 10

2
≡ 5 mod 7;

and taking 5 + 6i and 3 + 3i:

3− 6

3− 5
≡ 3

2
≡ 5 mod 7.

It therefore becomes evident that the slope of this line in Z7 is 5. Since 2i is the only point
in the numerical range that lies on the imaginary axis, the y-intercept of this line is 2.
Therefore, for any point a+ bi ∈W (M),

b = 5a+ 2.

Comparing the slope of the numerical range to the slope of the line determined by our
eigenvectors further suggests that the two lines are perpendicular.

Example 3.6. We again consider the upper-left subplot in Figure 4, which plots the numer-
ical range of the matrix M in Example 3.5 as well as its eigenvalues 1+ i and 3+2i. Recall
that the slope of W (M) was determined to be 5. Note that the slope of the line determined
by 1 + i and 3 + 2i is

2− 1

3− 1
≡ 1

2
≡ 4 mod 7.

Finally note that 5 and 4 are negative reciprocals in Z7:

−1
5
≡ 6

12
≡ 1

2
≡ 4 mod 7.

Therefore the line of W (M) is perpendicular to the line determined by the eigenvalues of
M .

As it appears that the eigenvalues of our matrix determine the slope of its numerical range,
this naturally leads us to wonder whether the eigenvalues also determine a single point in
the numerical range, which together with the slope will determine a line. We conjecture
that the line of the numerical range intersects the midpoint of our eigenvalues.

19

Figure 5: Calculating slopes in Examples 3.5 and 3.6.

Example 3.7. Once again, consider the upper-left subplot in Figure 4, which plots the
numerical range of the matrix M in Example 3.5 as well as its eigenvalues 1+ i and 3+2i.
First, we can calculate the midpoint of 1 + i and 3 + 2i as

(1 + i) + (3 + 2i)

2
=

4 + 3i

2
= 2 +

3

2
i ≡ 2 + 5i mod 7.

Let m denote the line of W (M); recall that this line is given by b = 5a + 2. Now let ℓ
denote the line determined by our eigenvalues, which we can represent in point-slope form
by (b− 1) = 4(a− 1); this simplifies to b = 4a+ 4.

The values for a and b that satisfy the equations of both m and ℓ are a = 2 and b = 5.
Therefore the point of intersection between m and ℓ is 2 + 5i, which is the midpoint of our
eigenvalues.

Figure 6 shows four other randomly chosen examples. In each, the point of intersection
between lines m and ℓ is clearly incident with the midpoint of the eigenvalues. This, along
with significantly more examples and an inability to find any counterexamples, leads us to
the following conjecture regarding the structure of the numerical range for Lund matrices.

Conjecture 3.8. If M ∈ M2(Z7[i]) is a Lund matrix with eigenvalues λ1 and λ2, then

W (M) is the line perpendicular to
←−→
λ1λ2 that passes through λ1+λ2

2 .

20

Figure 6: The midpoints (yellow crosses) of randomly-selected eigenvalues intersect with
the numerical range of Lund matrices with those eigenvalues.

21

3.3 Approaches

Being able to prove Conjecture 3.8 is central to our goal of understanding the structure
of the numerical range for matrices with self-orthogonal eigenvectors. However, a rigorous
proof of this conjecture has been elusive. We consider two different approaches, namely
analyzing the algebraic definition of the numerical range and investigating unitary similarity
of matrices with self-orthogonal vectors.

3.3.1 Algebra of the Numerical Range

We investigate the algebraic definition of the numerical range for a Lund matrix M ∈
M2(Z7[i]) with eigenvalues λ1, λ2 ∈ Z7[i] corresponding to eigenvectors z1, z2 ∈ Z7[i]

2.
Using the diagonalization method, we begin by expressing an arbitrary element of a ∈
W (M) in the form

a = x∗ [z1 z2
] [λ1 0

0 λ2

] [
z1 z2

]−1
x,

where x is a unit vector. Clearly, the matrix[
z1 z2

]−1

poses some challenges to algebraically manipulating the above expression, so we employ the
result of the following lemma.

Lemma 3.9. If z1, z2 ∈ Zp[i]
2 are linearly-independent self-orthogonal vectors and

[
a1 a2

]
=

[
z1

T

z2
T

]−1

,

then a1 and a2 are self-orthogonal.

Proof. Let z1, z2 ∈ Zp[i]
2 be linearly-independent self-orthogonal vectors and let

[
a1 a2

]
=

[
z1

T

z2
T

]−1

.

Since z1 and z2 are linearly independent, they form a self-orthogonal basis for Zp[i]
2 by [6].

Therefore the matrix [
z1

T

z2
T

]
is invertible. Thus there exist linearly independent vectors a1,a2 ∈ Zp[i]

2 such that

[
a1 a2

]
=

[
z1

T

z2
T

]−1

.

22

We observe that [
a1

∗a1 a1
∗a2

a2
∗a1 a2

∗a2

]
=

[
a1

∗

a2
∗

] [
a1 a2

]
=
[
a1 a2

]∗ [
a1 a2

]
=

([
z1

T

z2
T

]−1
)∗ [

z1
T

z2
T

]−1

.

Since (A∗)−1 =
(
A−1

)∗
, we have([
z1

T

z2
T

]−1
)∗ [

z1
T

z2
T

]−1

=

([
z1

T

z2
T

]∗)−1 [
z1

T

z2
T

]−1

=

([
z1

T

z2
T

] [
z1

T

z2
T

]∗)−1

=

([
z1

T

z2
T

] [
z1 z2

])−1

=

[
z1

Tz1 z1
Tz2

z2
Tz1 z2

Tz2

]−1

=

[
0 z1

Tz2
z2

Tz1 0

]−1

.

Note that since z1 and z2 form a self-orthogonal basis for Zp[i]
2, they must not be orthogonal

[6]. Therefore z1
Tz2 ̸= 0 and z2

Tz1 ̸= 0, so the matrix[
0 z1

Tz2
z2

Tz1 0

]
is invertible. By [9] we have[

0 z1
Tz2

z2
Tz1 0

]−1

=

[
0 −z1Tz2

−z2Tz1 0

]
−1

z1Tz2z2Tz1

=

[
0 1

z2T z1
1

z1T z2
0

]
.

It therefore follows that [
a1

∗a1 a1
∗a2

a2
∗a1 a2

∗a2

]
=

[
0 1

z2T z1
1

z1T z2
0

]
,

so a1
∗a1 = 0 and a2

∗a2 = 0. Thus a1 and a2 are self-orthogonal.

Additionally, we are able to derive an expression for the matrix
[
z1 z2

]−1
in terms of the

vectors z1 and z2.

Lemma 3.10. If z1, z2 ∈ Zp[i]
2 are linearly-independent self-orthogonal vectors, then

[
z1 z2

]−1
=

[1
z2∗z1

0

0 1
z1∗z2

] [
z2

∗

z1
∗

]
.

23

Proof. Let z1, z2 ∈ Zp[i]
2 be linearly-independent self-orthogonal vectors. We observe that[1

z2∗z1
0

0 1
z1∗z2

] [
z2

∗

z1
∗

] [
z1 z2

]
=

[1
z2∗z1

0

0 1
z1∗z2

] [
z2

∗z1 z2
∗z2

z1
∗z1 z1

∗z2

]
=

[1
z2∗z1

0

0 1
z1∗z2

] [
z2

∗z1 0
0 z1

∗z2

]
=

[
z2∗z1
z2∗z1

0

0 z1∗z2
z1∗z2

]

=

[
1 0
0 1

]
.

Since [1
z2∗z1

0

0 1
z1∗z2

] [
z2

∗

z1
∗

]
is a left inverse for

[
z1 z2

]
, it follows by a corollary to the Invertible Matrix Theorem that

it must also be a right inverse and therefore the inverse of
[
z1 z2

]
.

Using the results from Lemma 3.10, we can derive an expression for an arbitrary element
of W (M).

Theorem 3.11. If M ∈ M2(Z7[i]) is a Lund matrix with eigenvalues λ1, λ2 ∈ Z7[i] cor-
responding to eigenvectors z1, z2 ∈ Z7[i]

2, then an arbitrary element a ∈ W (M) can be
expressed as

a =
λ1

z2∗z1
x∗z1z2

∗x+
λ2

z2∗z1
x∗z2z1

∗x,

where x is a unit vector.

Proof. Let M ∈M2(Z7[i]) be Lund matrix with eigenvalues λ1, λ2 ∈ Z7[i] corresponding to
eigenvectors z1, z2 ∈ Z7[i]

2. Using the diagonalization method, we can express an arbitrary
element a ∈W (M) in the form

a = x∗ [z1 z2
] [λ1 0

0 λ2

] [
z1 z2

]−1
x

for some unit vector x. By Lemma 3.10, we have

x∗ [z1 z2
] [λ1 0

0 λ2

] [
z1 z2

]−1
x = x∗ [z1 z2

] [λ1 0
0 λ2

] [1
z2∗z1

0

0 1
z1∗z2

] [
z2

∗

z1
∗

]
x

=
[
x∗z1 x∗z2

] [λ1
z2∗z1

0

0 λ2
z1∗z2

] [
z2

∗x
z1

∗x

]
=
[

λ1
z2∗z1

x∗z1
λ2

z1∗z2
x∗z2

] [z2∗x
z1

∗x

]
=

λ1

z2∗z1
x∗z1z2

∗x+
λ2

z2∗z1
x∗z2z1

∗x.

24

While this result does not yield a conclusive result for Conjecture 3.8, we hope that it may
shed some light on how a proof of the conjecture may be approached.

3.3.2 Unitary Similarity of Lund Matrices

We recall the observation in Conjecture 3.4 that Lund matrices with the same eigenvalues
have the same numerical range regardless of the eigenvectors. Considering the fact that the
finite field numerical range is invariant under unitary similarity, this leads us to conjecture
that all Lund matrices with the same eigenvalues are unitarily similar to each other.

Conjecture 3.12. If M,N ∈M2(Z7[i]) are Lund matrices with the same eigenvalues, then
there exists a unitary matrix U ∈M2(Z7[i]) such that M = U∗NU .

While we have not been able to prove this conjecture, we do have the following interesting
result.

Theorem 3.13. If M ∈ M2(Z7[i]) is a Lund matrix and U ∈ M2(Z7[i]) is unitary, then
U∗MU is a Lund matrix with the same eigenvalues.

Proof. Let M ∈M2(Z7[i]) be a Lund matrix and let U ∈M2(Z7[i]) be unitary. By Lemma
3.10, M can be expressed as

M =
[
z1 z2

] [λ1 0
0 λ2

] [1
z2∗z1

0

0 1
z1∗z2

] [
z2

∗

z1
∗

]
,

where λ1 and λ2 are the eigenvalues of M corresponding to eigenvectors z1 and z2. Thus
we have

U∗MU = U∗ [z1 z2
] [λ1 0

0 λ2

] [1
z2∗z1

0

0 1
z1∗z2

] [
z2

∗

z1
∗

]
U

=
[
U∗z1 U∗z2

] [λ1 0
0 λ2

] [1
z2∗z1

0

0 1
z1∗z2

] [
z2

∗U
z1

∗U

]
.

Let a1 = U∗z1 and a2 = U∗z2. Note that

a2
∗a1 = (U∗z2)

∗ U∗z1 = z2
∗UU∗z1 = z2

∗z1

and

a1
∗a2 = (U∗z1)

∗ U∗z2 = z1
∗UU∗z2 = z1

∗z2.

Therefore

U∗MU =
[
a1 a2

] [λ1 0
0 λ2

] [1
a2

∗a1
0

0 1
a1

∗a2

] [
a2

∗

a1
∗

]
.

By Theorem 1.18, a1 and a2 are self-orthogonal. Therefore U∗MU is a Lund matrix with
the same eigenvalues as M .

We still understand very little about Conjecture 3.12 but hope the results of Theorem 3.13
may be the first step towards proving this conjecture.

25

4 Conclusion

In this project, we have examined the finite field numerical range, specifically focusing on
2×2 matrices over the finite field Z7[i]. We devoted special attention to matrices with unique
eigenvalues corresponding to linearly independent, self-orthogonal eigenvectors, which we
term Lund matrices.

Section 3 yields numerous interesting results about Lund matrices that we hope can be
explored further, with the specific goal of proving Conjecture 3.8. Both the approaches
in sections 3.3.1 and 3.3.2 show great promise towards proving this conjecture, and either
may be pursued as a future work. As an additional direction, we suggest approaching the
proof of Conjecture 3.8 using Kippenhahn’s boundary-generating curve, which we have not
considered in this project but which has been useful in previous work on finite field numerical
ranges. If we are able to prove Conjecture 3.8 for the 2× 2 case over Z7[i], this could open
up even further investigation of Lund matrices over other finite fields and eventually in the
3× 3 case.

While much more work remains to be done on the numerical range over finite fields, this
project presents some very interesting preliminary results and raises even more questions
about the structure of the numerical range and the behavior of self-orthogonal vectors.
Hopefully our contributions can serve as a starting point for much more research to come
in this developing area of mathematics.

References

[1] O. Toeplitz. Das algebraische analogen zu einem satze von fejár. Mathematische
Zeitschrift, 2:187–197, 1918.

[2] F. Hausdorff. Der wertvorrat einer bilinearform. Mathematische Zeitschrift, 3:314–316,
1919.

[3] Rudolf Kippenhahn. Über den wertevorrat einer matrix. Mathematische Nachrichten,
6(3-4):193–228, 1951.

[4] Translated by Paul F. Zachlin and Michiel E. Hochstenbach. On the numerical range of
a matrix. Linear and Multilinear Algebra, 56(1-2):185–225, 2008.

[5] Jane Ivy Coons, Jack Jenkins, Douglas Knowles, Rayanne Luke, and Patrick Rault.
Numerical ranges over finite fields. Linear Algebra and its Applications, 501:37–47, 07
2016.

[6] Aishah Ibraheam Basha and Judi J. McDonald. Orthogonality over finite fields. Linear
and Multilinear Algebra, 70(22):7277–7289, 2022.

[7] Aishah Ibraheam Basha. Linear Algebra over Finite Fields. PhD thesis, Washington
State University, 2020.

26

[8] E. Ballico. On the numerical range of matrices over a finite field. Linear Algebra and
its Applications, 512:162–171, 2017.

[9] S.H. Friedberg, A.J. Insel, and L.E. Spence. Linear Algebra. Pearson Education, 2014.

27

5 Appendix I: Selected Code Listings for linalg_Zpi()

import numpy as np

import itertools

from itertools import permutations

class linalg_Zpi ():

When initializing the tool , input the dimension n and prime p

def __init__(self , n, p):

self.size = n

self.mod = p

Listing 1: Initializing the class linalg_Zpi()

Divide numbers in Zp

def div_real(self , a, b):

if b%self.mod ==0:

raise Exception("FREAK OUT")

return self.div_tbl[b%self.mod , a%self.mod]

Divide numbers in Zp[i]

def div_complex(self , z1 , z2):

num = z1 * np.conj(z2)

den = z2.real **2 + z2.imag **2

num = self.sim_s(num)

den = int(den%self.mod)

a = self.div_real(int(num.real), den)

b = self.div_real(int(num.imag), den)

return complex(a,b)

Listing 2: Division methods

28

Create table of all possible fractions in Zp

div_tbl = np.zeros((self.mod , self.mod), dtype=int)

for i in range(1,self.mod):

for j in range(1,self.mod):

for elem in range(1,self.mod):

if (elem*i)%self.mod == j:

div_tbl[i,j] = elem

break

self.div_tbl = div_tbl

Listing 3: Generating the quotient table

Check if two column vectors are Zp[i] multiples of each other

def mult(self , v1 , v2):

This helper function determines whether two elements of Zp[i] are

Zp[i] multiples of each other by row -reducing a matrix

def solve_mult(M):

if M[0,0] == 0:

temp = np.array(M[0])

M[0] = M[1]

M[1] = temp

M[0] = self.div_real(np.array(M[0]), M[0,0])

M[1] -= M[0]*M[1,0]

M[1]% self.mod

M[1] = self.div_real(np.array(M[1]), M[1,1])

M[0] -= M[1]*M[0,1]

M[0]% self.mod

Returns the multiplier

return complex(M[0,2], M[1 ,2])

store = np.empty((self.size , 1), dtype=np.csingle)

inds = np.arange(0, self.size)

for i in range(self.size):

real1 = int(v1[i].real.item())

imag1 = int(v1[i].imag.item())

real2 = int(v2[i].real.item())

imag2 = int(v2[i].imag.item())

M = np.array ([[real1 , -imag1 , real2],

[imag1 , real1 , imag2]])

Check if the first number is 0 to avoid 0-division errors

if real1 ==0 and imag1 ==0:

if real2 ==0 and imag2 ==0:

inds[i]=-1

store[i]=-1

else:

return None

else:

store[i] = self.sim_s(solve_mult(M))

29

Check that all of the multipliers are the same

if np.all(np.take(store , inds[inds >=0]) == np.take(store , inds[inds

>=0]) [0]):

return np.take(store , inds[inds >=0]) [0]. item()

else:

return None

Listing 4: The self.mult() method

Calculate the inverse of an invertible matrix and freak out if non -

invertible

def inv(self , M):

M = np.concatenate ((M, np.identity(self.size , dtype=int)), axis =1)

for i in range(self.size -1):

if M[i,i] == 0:

for j in range(i+1, self.size):

if M[j, i] != 0:

temp = np.array(M[i])

M[i] = M[j]

M[j] = temp

temp = M[i,i]t

for x in range (2* self.size):

M[i,x] = self.div_complex(M[i,x], temp)

for k in range(i+1, self.size):

M[k] -= M[i]*M[k,i]

for x in range (2* self.size):

M[k,x] = self.sim_s(M[k,x])

temp = M[-1,self.size -1]

for x in range (2* self.size):

M[-1,x] = self.div_complex(M[-1,x], temp)

for l in range(self.size -1,0,-1):

for n in range(l-1,-1,-1):

M[n] -= M[l]*M[n,l]

for x in range (2* self.size):

M[n,x] = self.sim_s(M[n,x])

return self.sim_a(M[:,-self.size :])

Listing 5: The self.inv() method

30

6 Appendix II: Selected Code Listing for gen_norm1()

import numpy as np

import itertools

from itertools import permutations

from itertools import product

from linalg_Zpi import linalg_Zpi

class gen_norm1 ():

def __init__(self , mod , size):

inst = linalg_Zpi(p=mod , n=size)

field = np.arange(0, mod)

Generate all vectors x such that x*x=1

def gen_x():

combine = list(itertools.combinations_with_replacement (\

field , 2*size))

store = np.expand_dims(np.zeros (2*size , dtype=int), axis =0)

for row in combine [1:]:

sq_sum = 0

for elem in row:

sq_sum += elem **2

if sq_sum % mod == 1:

array = np.array(row)

expanded = np.expand_dims(array , axis =0)

store = np.append(store , expanded , axis =0)

permute = np.expand_dims(np.zeros (2*size , dtype=int), axis =0)

for row in store [1:]:

p = list(permutations(row , 2*size))

for item in p:

array = np.array(item)

expanded = np.expand_dims(array , axis =0)

permute = np.append(permute , expanded , axis =0)

permute = np.unique(permute , axis =0).reshape(-1, size , 2)

x = np.empty ((permute.shape[0], size , 1), dtype=np.csingle)

for i in range(permute.shape [0]):

for j in range(size):

x[i, j] = complex(permute[i,j,0], permute[i,j,1])

return x

Find minimal list of norm -1 vectors

def sim_x():

norm0 = gen_x()[1:]

length = len(norm0)

inds = np.arange(norm0.shape [0])

for i in range(length -1):

vector = norm0[i]

for j in range(i+1,length):

31

if inds[j]== -1:

continue

else:

if inst.mult(vector , norm0[j]) != None:

inds[j]= -1

return norm0[inds[inds != -1]]

self.x = sim_x ()

Generate vectors x* from x

def gen_xstar ():

x_star = np.empty ((len(self.x), size), dtype=np.csingle)

for i in range(len(self.x)):

x_star[i] = np.transpose(np.conjugate(self.x[i]))

return x_star

self.xstar = gen_xstar ()

Set class variables

self.mod = mod

self.size = size

Listing 6: The gen_norm1() class

32

7 Appendix III: Selected Code Listing for numrange_Zpi()

import numpy as np

import matplotlib.pyplot as plt

from Imports.linalg_Zpi import linalg_Zpi

class numrange_Zpi ():

def __init__(self , n, p, M):

Load in norm -0 vectors

str_norm0 = "Imports/norm0/p="+str(p)+"_n="+str(n)+".npz"

self.norm0 = np.load(str_norm0)["norm0"]

Load in norm -1 vectors

str_norm1 = "Imports/norm1/p="+str(p)+"_n="+str(n)+".npz"

self.norm1 = np.load(str_norm1)["norm1"]

self.linalg = linalg_Zpi(n=n, p=p)

self.M = M

self.n = n

self.p = p

def W1(self , plot=True):

W1 = np.empty(len(self.norm1), dtype=np.csingle)

for i in range(len(self.norm1)):

x = self.norm1[i]

xstar = self.linalg.sim_a(np.conj(x.transpose ()))

W1[i] = self.linalg.prod((xstar , self.M, x))

out = np.unique(W1)

if plot==True:

plt.scatter(out.real , out.imag , s=200, c=’red’)

plt.axis([0, self.p-1, 0, self.p-1])

plt.show

return out

Listing 7: The numrange_Zpi() class

33

	Introduction
	Key Terms
	Self-Orthogonality
	Eigenvalues & Eigenvectors
	Unitary Matrices
	Approach

	Computational Tools
	Finite Field Linear Algebra
	Scalar Division
	Zp[i] Multiples of Vectors
	Matrix Inverses

	Generative Methods
	Unit and Self-Orthogonal Vectors

	Numerical Range Solver

	Investigating 22 Matrices Over Z7[i]
	Preliminary Observations
	Structure of the Numerical Range
	Approaches
	Algebra of the Numerical Range
	Unitary Similarity of Lund Matrices

	Conclusion
	Appendix I: Selected Code Listings for [basicstyle=]+linalgZpi()+
	Appendix II: Selected Code Listing for [basicstyle=]+gennorm1()+
	Appendix III: Selected Code Listing for [basicstyle=]+numrangeZpi()+

