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Introduction

The goal of our study is to investigate the polynomial shift operator 7%/ on
the quantum time scale ¢"°. This allows us to generalize results from calculus
to more restricted domains.

Unifying Analysis

Time scale calculus is a unification of continuous analysis (calculus on the
real line) and discrete analysis (calculus on the integers).

TYPE OF ANALYSIS DOMAIN FUNDAMENTAL OPERATION
Continuous Analysis R Realline f'(t) Derivative
Discrete Analysis 7. Integers Af(t) Difference

Time Scale Calculus T Time scale f2(t) Delta-derivative

A time scale is any closed subset of the real numbers.
e Common time scales:
R Z (0,1
e Time scale operations:
* Forward jump operator o(t): next element of the time scale
e Ex:o(t)=t+1in Z
e Graininess ;(t) = o(t) — t: distance to next element of the time scale
e Ex: u(t)=1in Z
e Delta-derivative:
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Redefining Powers

The power rule of differentiation:
A
(t*)" = k"t

In order to respect the power rule, we must redefine polynomial powers in
different time scales:

(tv S)ﬁ T (t _ S>k

(t, s)% T (t—s)t—s—1)...(t—s5—(t—1))
i - k—1 t— sqV

ST |5

7/-Shift Operator

The polynomial shift operator %/ increases the order of a polynomial func-
tion by 1:
* On the real numbers, we multiply by a factor of (¢ — s)

o Ex: % {(t,s)7} = (t,s)z(t—1,8)7 = (t,5)}
e Shift on other time scales is more complex due to redefined powers

o Ex: % {(t.s)i}=%{t—s)}t=0t—s)(t—s)7=({t—s)
e General case, see Figure 1:
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From the general case, we derived a functional representation for %/ { f}
on ¢° for arbitrary f:
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Quantum Calculus

FIGURE 1: The

mechanism
of the shift

operator on

an arbitrary
d function and

time scale

Alternate Approach

As an alternate approach, we consider a non-standard redefinition of a poly-
nomial power (t — s)":
k—1
Or(t,s) = H t — sq”
v=0
o Easier shift property: 6.(t,s) - 6, (t,0%(5)) = Skrmlt, s)
 Nonlinear coefficient for power rule:
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Calculus on the quantum time scale Connections exist to:

¢ ={1,q,¢° ¢°, .. ) e Combinatorics
where ¢ > 1 e Number theory
* Forward jump: o(t) = gt e Quantum computing

e Graininess: u(t) = (¢ — 1)t e Relativity

Laplace Transform

e The Laplace transform is a transform of a function from the time scale to
the complex plane:

2} = [ " f()eos(o(r), s)AT

where eg.(t, s) is the time scale analogue of ¢~ *(!=%) with the same derivative
properties

e The inverse Laplace transform ¥ ! undoes the Laplace transform

* |n general, differentiation in the complex numbers corresponds to multi-
plication by ¢ in the time scale

e |nvestigate how various differential equations behave with 9;.
e Operator equations with %/ in quantum calculus
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