
As an alternate approach, we consider a non-standard redefinition of a poly-
nomial power               :

• Easier shift property:
• Nonlinear coefficient for power rule:
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The power rule of differentiation:

In order to respect the power rule, we must redefine polynomial powers in 
different time scales:

Redefining Powers

Future Works
• Investigate how various differential equations behave with
• Operator equations with      in quantum calculus
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Quantum Calculus

• The Laplace transform is a transform of a function from the time scale to 
the complex plane:

 where                  is the time scale analogue of                      with the same derivative 
properties

• The inverse Laplace transform           undoes the Laplace transform
• In general, differentiation in the complex numbers corresponds to multi-

plication by    in the time scale

Laplace Transform
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Alternate Approach

      -Shift Operator
The polynomial shift operator        increases the order of a polynomial func-
tion by 1:
• On the real numbers, we multiply by a factor of            
 • Ex: 
• Shift on other time scales is more complex due to redefined powers
 • Ex:
• General case, see Figure 1:

From the general case, we derived a functional representation for                    
on       for arbitrary   :
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Unifying Analysis

TYPE OF ANALYSIS DOMAIN FUNDAMENTAL OPERATION

The goal of our study is to investigate the polynomial shift operator      on 
the quantum time scale       . This allows us to generalize results from calculus 
to more restricted domains.

Introduction

Continuous Analysis

Discrete Analysis

Time Scale Calculus

Time scale calculus is a unification of continuous analysis (calculus on the 
real line) and discrete analysis (calculus on the integers).

Derivative

Difference

Delta-derivative

Real line

Integers

Time scale

A time scale is any closed subset of the real numbers.
• Common time scales:
             
• Time scale operations:
 • Forward jump operator         : next element of the time scale
  • Ex:                       in 
 • Graininess                           : distance to next element of the time scale
  • Ex:                 in 
• Delta-derivative:

f∆(t) =

{
f ′(t), µ(t) = 0
f(σ(t))−f(t)

µ(t) , µ(t) > 0

Calculus on the quantum time scale

where
• Forward jump: 
• Graininess:

qN0 = {1, q, q2, q3, . . .}
Connections exist to:
• Combinatorics
• Number theory
• Quantum computing
• Relativity
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